Physics, asked by Amil5193, 11 months ago

Body a of mass m is droped from height of 1 m and body b of mass 3m is droped from height 9m ratio of time taken by bodies to reach the ground

Answers

Answered by Anonymous
13

GiveN :

  • Mass of body A = m
  • Body A is dropped from 1m (h1)
  • Mass of body B = 3m
  • Body B is dropped from 9m (h2)

To FinD :

Ratio of Time taken by both the bodies to reach ground.

SolutioN :

Initial velocity (u) would be zero in every case,

\implies \sf{h \: = \: ut \: + \: \dfrac{1}{2} gt^2} \\ \\ \implies \sf{h \: = \: \dfrac{gt^2}{2}} \\ \\ \implies \sf{t^2 \: = \: \dfrac{2h}{g}} \\ \\ \implies {\boxed{\sf{t \: = \: \sqrt{\dfrac{2h}{g}}}}}

__________________________

\underbrace{\sf{Time \: of \: Body \: A}}

\implies \sf{t_1 \: = \: \sqrt{\dfrac{2h_1}{g}}} \\ \\ \implies \sf{t_1 \: = \: \sqrt{\dfrac{2(1)}{10}}} \\ \\ \implies \sf{t_1 \: = \: \sqrt{\dfrac{2}{10}}} \: \: \: \: \: ...(1)

__________________________

\underbrace{\sf{Time \: of \: Body \: B}}

\implies \sf{t_2 \: = \: \sqrt{\dfrac{2h_2}{g}}} \\ \\ \implies \sf{t_2 \: = \: \sqrt{\dfrac{2(9)}{10}}} \\ \\ \implies \sf{t_2 \: = \: \sqrt{\dfrac{18}{10}}} \: \: \: \: \: \: \: ...(2)

_______________________

\underbrace{\sf{Ratio \: of \: time \: Intervals}}

\implies \sf{\dfrac{t_1}{t_2} \: = \: \dfrac{\sqrt{\dfrac{2}{10}}}{\sqrt{\dfrac{18}{10}}}} \\ \\ \implies \sf{\dfrac{t_1 ^2}{t_2 ^2} \: = \: \dfrac{\dfrac{2}{10}}{\dfrac{18}{10}}} \\ \\ \implies \sf{\dfrac{t_1 ^2}{t_2 ^2} \: = \: \dfrac{2}{18}} \\ \\ \implies \sf{\dfrac{t_1 ^2}{t_2 ^2} \: = \: \dfrac{1}{9}} \\ \\ \implies \sf{\dfrac{t_1}{t_2} \: = \: \sqrt{\dfrac{1}{9}}} \\ \\ \implies \sf{\dfrac{t_1}{t_2} \: = \: \dfrac{1}{3}} \\ \\ \underline {\sf{\therefore \: Ratios \: of \: Time \: interval \: is \: 1:3}}

Answered by nirman95
9

Given:

Body of mass m is dropped from 1 m ,

Body of mass 3m is dropped from 9 m.

To find:

Ratio of time taken to reach the ground.

Concept:

Considering acceleration due to gravity to be constant along the journey , we can simply apply the equation of kinematics to solve this problem.

Calculation:

For any object , time taken be t .

 h = ut +  \frac{1}{2} g {t}^{2}

 =  > h = 0 +  \frac{1}{2} g {t}^{2}

 =  >  {t}^{2}  =  \dfrac{2h}{g}

 =  > t =  \sqrt{ \dfrac{2h}{g} }

Since g is constant , we can say that :

 \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \boxed{ \huge{ \red{ \bold{t \: \:  \propto \:  \sqrt{h} }}}}

Let time for 1st body be t1 , and for 2nd body be t2.

 \therefore \:  \:  \dfrac{t1}{t2}  =  \sqrt{ \dfrac{h1}{h2} }

  =  >  \:  \:  \dfrac{t1}{t2}  =  \sqrt{ \dfrac{1}{9} }

  =  >  \:  \:  \dfrac{t1}{t2}  =  \dfrac{1}{3}

 =  > t1 :  t2 = 1 : 3

So final ratio is :

 \boxed{ \blue{ \huge{ \bold{t1 :  t2 = 1 : 3}}}}

Similar questions