body is projected up with an initial velocity of 25 mt at an angle 35° with the horizontal Calculate (a) maximum height (b) time taken to reach the maximum height (c) horizontal range
Answers
Answered by
92
Answer:
Explanation:
Given :
- Initial velocity (u) = 25 m/s
- Angle (θ) = 35°
- Acceleration due to gravity (g) = 9.8 m/s^2
To Find :
- (a) Maximum height.
- (b) Time taken to reach the maximum height.
- (c) Horizontal range.
Formula to be used :
- Maximum height formula, ie,.. H = u^2Sin^2θ/2g
- Horizontal range formula, ie,, R = u^2Sin2θ/g
- Time of flight formula, ie,, T = 2usinθ/g
Solution :
★Maximum height,
H = u^2Sin^2θ/2g
{ °.° Sin35° = 0.57 }
⇒ H = 25^2 × (0.57)^2 /2 × 9.8
⇒ H = 625 × 0.3249/19.6
⇒ H = 203.0/19.6
⇒ H = 10.3571428 ≈ 11
⇒ H = 11 m
★Time taken to reach the maximum height,
T = 2usinθ/g
⇒ T = 2 × 25 × sin35°/9.8
⇒ T = 50 × 0.57 /9.8
⇒ T = 28.5/9.8
⇒ T = 2.9 ≈ 3
⇒ T = 4 s
★Horizontal range,
R = u^2Sin2θ/g
⇒ R = (25)^2 × Sin2(35)°/9.8
⇒ R = 625 × Sin70°/9.8
{ °.° Sin70° = 0.93 }
⇒ R = 625 × 0.93/9.8
⇒ R = 581.25/9.8
⇒ R = 59.31122449 ≈ 60
⇒ R = 60 m
Answered by
41
Given :-
- Initial velocity = 25 m/s
- Angle of projection = 35°
To Find :-
- Maximum height
- Time to reach maximum height ( Time of Ascent )
- Horizontal Range
Solution :-
- u = 25 m/s
- θ = 35°
- g = 9.8 m/s²
a) Calculating Maximum height :-
➩
Substituting the values :-
➩
➩
➩
➩
Maximum height = 10.36 m
b) Calculating time to reach maximum height -
➩
➩
Substituting the values :-
➩
➩
➩
➩
Time taken to reach maximum height = 1.45 sec
c) Calculating Horizontal Range :-
➩
➩
➩
➩
➩
Horizontal Range = 59.3 m
Similar questions