Physics, asked by kavitak8792, 5 months ago

body is projected up with an initial velocity of 25 mt at an angle 35° with the horizontal Calculate (a) maximum height (b) time taken to reach the maximum height (c) horizontal range ​

Answers

Answered by Anonymous
92

Answer:

Explanation:

Given :

  • Initial velocity (u) = 25 m/s
  • Angle (θ) = 35°
  • Acceleration due to gravity (g) = 9.8 m/s^2

To Find :

  • (a) Maximum height.
  • (b) Time taken to reach the maximum height.
  • (c) Horizontal range.

Formula to be used :

  • Maximum height formula, ie,.. H = u^2Sin^2θ/2g
  • Horizontal range formula, ie,, R = u^2Sin2θ/g
  • Time of flight formula, ie,, T = 2usinθ/g

Solution :

★Maximum height,

H = u^2Sin^2θ/2g

{ °.° Sin35° = 0.57 }

⇒ H = 25^2 × (0.57)^2 /2 × 9.8

⇒ H = 625 × 0.3249/19.6

⇒ H = 203.0/19.6

⇒ H = 10.3571428 ≈ 11

H = 11 m

Time taken to reach the maximum height,

T = 2usinθ/g

⇒ T = 2 × 25 × sin35°/9.8

⇒ T = 50 × 0.57 /9.8

⇒ T = 28.5/9.8

⇒ T = 2.9 ≈ 3

T = 4 s

Horizontal range,

R = u^2Sin2θ/g

⇒ R = (25)^2 × Sin2(35)°/9.8

⇒ R = 625 × Sin70°/9.8

{ °.° Sin70° = 0.93 }

⇒ R = 625 × 0.93/9.8

⇒ R = 581.25/9.8

⇒ R = 59.31122449 ≈ 60

R = 60 m

Answered by Anonymous
41

Given :-

  • Initial velocity = 25 m/s
  • Angle of projection = 35°

To Find :-

  • Maximum height
  • Time to reach maximum height ( Time of Ascent )
  • Horizontal Range

Solution :-

  • u = 25 m/s
  • θ = 35°
  • g = 9.8 m/s²

a) Calculating Maximum height :-

\sf Maximum \:height = \dfrac{u^2sin^2\theta}{2g}

Substituting the values :-

\sf H = \dfrac{25^2 \times sin^2 35}{2 \times 9.8}

\sf H = \dfrac{625 \times (0.57)^2}{2 \times 9.8}

\sf H = \dfrac{203.0625}{19.6}

\sf H = 10.36

Maximum height = 10.36 m

b) Calculating time to reach maximum height -

\sf t = \dfrac{\frac{2usin\theta}{g}}{2}

\sf t = \dfrac{u sin\theta}{g}

Substituting the values :-

\sf t = \dfrac{25 \times sin35}{g}

\sf t = \dfrac{25 \times 0.57}{9.8}

\sf t = \dfrac{14.25}{9.8}

\sf t = 1.45

Time taken to reach maximum height = 1.45 sec

c) Calculating Horizontal Range :-

\sf R = \dfrac{u^2sin2\theta}{g}

\sf R = \dfrac{25 \times 25 \times sin70}{9.8}

\sf R = \dfrac{625 \times 0.93}{9.8}

\sf R = \dfrac{581.25}{9.8}

\sf R = 59.3

Horizontal Range = 59.3 m

Similar questions