Physics, asked by hamzaayaz, 4 months ago

body of mass 10kg initially moving with velocity 5m/s changes its velocity to 25m/s in 4 s. Calculate the
change in momentum and hence force applied

Answers

Answered by shaktisrivastava1234
31

 \huge  \underline{\fbox{Answer}}

 \large  \underline{\underline{ \frak {\color{red}Given::}}}

 \rightarrow \sf{Mass  \: of  \: body(m)=10kg}

{ \rightarrow \sf{Initial  \: velocity (u) \:  of \:  body=5m {s}^{ - 1} }}

{ \rightarrow \sf{ Final \: velocity (v) \:  of \:  body=25m {s}^{ - 1} }}

 \sf \rightarrow{Time \:  taken  \: to  \: change  \: in \:  velocity=4sec}

 \large  \underline{\underline{ \frak {\color{peru}To \:  find::}}}

 \sf \leadsto{Change  \: in  \: momentum \:  of \:  body.}

 \sf \leadsto{Force  \: required  \: to \:  change \:  in  \: velocity.}

 \large  \underline{\underline{ \frak { \pink{Formula \:  required::}}}}

✽{ \fbox{Momentum of body(P)=mass(m)×velocity(v)}}✽

✽{ \boxed {\rm{Change \:  in  \: momentum (P)  \: of \:  body=Final \:  momentum(P_2)  \: of \:  body-Initial  \: momentum(P_1)  \: of  \: body}}}✽

✽{ \fbox{Force(F)=mass(m)×acceleration(a)}}✽

✽{ \boxed {\rm{Acceleration (a)= \frac{Change \:  in  \: velocity}{Time \:  taken \:  to \:  change \:  in \:  velocity} }}}✽

 \large  \underline{\underline{ \frak {\color{indigo}According  \: to  \: Question::}}}

{ \implies{ \sf{Initial \: momentum \:  of  \: body(P_1)=mass(m) \: of \: the \: body×initial \: velocity(u) \: of \: the \: body}}}

{ \implies{ \sf{Initial \: momentum \:  of  \: body(P_1)=10kg \times 5m {s}^{ - 1} }}}

{ \implies{ \sf{Initial \: momentum \:  of  \: body(P_1)=50kg • m {s}^{ - 1} }}}

{ \implies{ \sf{Final \: momentum \:  of  \: body(P_2)=mass(m) \: of \: the \: body×final \: velocity(v) \: of \: the \: body}}}

{ \implies{ \sf{Final \: momentum \:  of  \: body(P_2)=10kg \times 25m {s}^{ - 1} }}}

{ \implies{ \sf{Final \: momentum \:  of  \: body(P_2)=250kg • m {s}^{ - 1} }}}

{ \implies{ {\sf{Change \:  in  \: momentum (P)  \: of \:  body=Final \:  momentum(P_2)  \: of \:  body-Initial  \: momentum(P_1)  \: of  \: body}}}}

{ \implies{ {\sf{Change \:  in  \: momentum (P)  \: of \:  body=250kg•m {s}^{ - 1}  - 50kg•m {s}^{ - 1} }}}}

{ \implies{ {\sf{Change \:  in  \: momentum (P)  \: of \:  body=200kg•m {s}^{ - 1}  }}}}

{ \sf{ \implies{Force(F) \: applied \: on \: body=mass(m)×acceleration(a)}}}

{ \sf{ \implies{Force(F) \: applied \: on \: body=mass(m)× \frac{Final  \: velocity(v)-Initial  \: velocity(u)}{Time \:  taken \:  to \:  change \:  in \:  velocity} }}}

{ \sf{ \implies{Force(F) \: applied \: on \: body=10kg× \frac{25m {s}^{ - 1} -5m {s}^{ - 1} }{4sec} }}}

{ \sf{ \implies{Force(F) \: applied \: on \: body=10kg× \frac{20m {s}^{ - 1} }{4sec}}}}

{ \sf{ \implies{Force(F) \: applied \: on \: body=10kg×{ \cancel {\frac{20m {s}^{ - 1} }{4sec}}}}}}

{ \sf{ \implies{Force(F) \: applied \: on \: body=10kg×{ {5m {s}^{ - 2} }}}}}

{ \sf{ \implies{Force(F) \: applied \: on \: body=50kg•{ {m {s}^{ - 2} }}}}}

 \large  \underline{\underline{ \frak {\color{blue}Hence,}}}

☆{ \boxed{ {\rm{Change \:  in  \: momentum (P)  \: of \:  body=200kg•m {s}^{ - 1}  }}}}☆

☆ \boxed{ \rm{{Force(F) \: applied \: on \: body=50N \: or \: 50kg•{ {m {s}^{ - 2} }}}}}☆

_________________________________________________________________________________


ItzArchimedes: Nice !
Similar questions