Math, asked by shila19dhumal, 2 months ago

bolve Following equations by using Eliminati
-on mothod
1
x+y=45 : 2x-y= 54
3x+y = 5 ; 2x+3y = 1.​

Answers

Answered by Anonymous
18

Answer:

Method used:-

Elimination method

Solution:-

\mathtt{x + y = 45 \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \: eq(1)}

\mathtt{2x - y = 54 \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \: eq(2)}

Now add both equations 1 and 2

\mathtt{(x + 2x) + (y - y) = 45 + 54}

\mathtt{3x = 99}

\mathtt{x =  \frac{99}{3} }

\mathtt{x = 33 \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \: \:  \:  \: \:  \:  \:  \:  eq(3)}

Now substitute the value of x in eq (1)

\mathtt{x + y = 45}

\mathtt{33 + y = 45}

\mathtt{y = 45 - 33}

\mathtt{y = 12}

\fbox\blue{x = 33}

\fbox\blue{y = 12}

Now solve part 2

\mathtt\blue{3x + y = 5}

Multiply the whole equation by 2

\mathtt\blue{2(3x + y = 5)}

\mathtt\blue{6x + 2y = 10 \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \: eq(1)}

In eq (2) multiply the whole eq by 3

\mathtt\blue{2x + 3y = 1}

\mathtt\blue{3(2x + 3y = 1)}

\mathtt\blue{6x + 9y = 3 \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \: \: eq(2)}

Subtract the both equation 1 and 2

\mathtt\blue{(6x - 6x) + (2y - 9y) = 10 - 3}

\mathtt\blue{ - 7y = 7}

\mathtt\blue{y =  - 1 \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \: eq(3)}

Now substitute the value of y in equation 1

\mathtt\blue{6x + 2y = 10}

\mathtt\blue{6x + 2 \times ( - 1) = 10}

\mathtt\blue{6x - 2 = 10}

\mathtt\blue{6x = 10 + 2}

\mathtt\blue{6x = 12}

\mathtt\blue{x =  \frac{12}{6} }

\mathtt\blue{x = 2}

\fbox{y= \: -1}

\fbox{x = 2}

Step-by-step explanation:

I hope this helps you mate.

Similar questions