Math, asked by basumahato731, 11 months ago

Both Lalima and Ramen cleaned the gardens of the house. Lalima 4 days and Ramen cleaning 3 days simultaneously
So 2/3 part work is done. If redness is cleaning for 3 days and ramen for 6 days simultaneously, then 11/12 parts work
Complete . By making simultaneous equations and solving lalima and ramen separately, work alone
In how many days Both .

Answers

Answered by shariquekeyam
1

\huge\ \sf{\red {[[«\: คꈤ \mathfrak Sฬєя \: » ]]}}

 \sf \: Let   \:the   \:whole  \: work   \:done   \:by   \:Lalima   \:be  \: x  \: and  \: Romen   \:be   \:y

 \sf \: work  \: done   \:by   \:lalima   \:in   \:1   \:day  \:= 1÷x

\ = \dfrac{1}{x}

 \sf \: work   \:done   \:by   \:lalima  \: in   \:4   \:days  \:= 1/x ×4

\ = \dfrac{4}{x}

 \sf \: work   \:done   \:by  \: Romen  \: in   \:1   \:day  \:= 1÷y

\ = \dfrac{1}{y}

 \sf \: work   \:done   \:by   \:the   \:Romen   \:in  \: 3  \: days  \:=1/y×3

\ = \dfrac{3}{y}

 \sf \: Both   \:worked   \:and   \:completed   \:2/3   \:part  \: of   \:work

\ {\dfrac{4}{x}+\dfrac{3}{y} = \dfrac{2}{3}} --------- equation 1

 \sf \: again,

 \sf \: work  \: done  \: by   \:lalima  \: in  \: 3  \:days  \:= 1/x×3

\ = \dfrac{3}{x}

 \sf \: work  \: done  \: by  \: the  \: Romen   \:in   \:3  \: days  \:=1/y×6

\ = \dfrac{6}{y}

 \sf \: Both   \:worked   \:and   \:completed   \:11/12  \: part  \: of  \: work

\ {\dfrac{3}{x}+\dfrac{6}{y} = \dfrac{11}{,12}}  \sf- ------ equation  \: 2

From equation 1 and 2

\ {\dfrac{4}{x}+\dfrac{3}{y} = \dfrac{2}{3}}

\ {\dfrac{3}{x}+\dfrac{6}{y} = \dfrac{11}{,12}}

 \sf \: -        \:  \: -       \:  \:    -         {by  \: subtracting}

___________

\ 0x - {\dfrac{15}{y} =-\dfrac{5}{3}}

\  ⟹{\dfrac{1}{y} =\dfrac{5}{3×15}}

\  ⟹{\dfrac{1}{y} =\dfrac{1}{9}}

 \sf \:  ⟹\: y=9

 \sf \: putting   \:the  \: value  \: of   \:9  \: in   \:equation  \: 1  ,we   \:get

\ {\dfrac{4}{x}+\dfrac{3}{9} = \dfrac{2}{3}}

\  ⟹{\dfrac{4}{x}= \dfrac{2}{3} -\dfrac{3}{9}}

\  ⟹{\dfrac{4}{x} = \dfrac{1}{3}}

\  ⟹{\dfrac{1}{x} = \dfrac{1}{12}}

 \sf \:  ⟹x=12

 \sf \: Therefore,\:Lalima\:required\: 12\:days\:for\:complete\:the\:work\:and\:Romen\:required\:9\:days \:to\:complete\:

Similar questions