English, asked by BRAINLYBOT1020, 3 months ago

Brainlians Here's your question
_______________________
Prove that.

\sf\sqrt{\dfrac {1-cos(\alpha)}{1+cos(\alpha)}}=\dfrac {sin(\alpha)}{1+cos (\alpha)}
_______________________
\starModerators and brainly stars can answer\star

Answers

Answered by amansharma264
104

EXPLANATION.

\sf \implies \sqrt{\dfrac{1 - cos(\alpha )}{1 + cos(\alpha )} }

As we know that,

In this type of question we multiply and divide by 1 + cosα, we get.

\sf \implies \sqrt{\dfrac{1 - cos(\alpha )}{1 + cos(\alpha )} \times \dfrac{1 + cos(\alpha )}{1 + cos(\alpha )}  }

\sf \implies \sqrt{\dfrac{1 - cos^{2}(\alpha)  }{(1 + cos(\alpha ))^{2} } }

\sf \implies \sqrt{\dfrac{ sin^{2}(\alpha)  }{(1 + cos(\alpha ))^{2} } }

\sf \implies \dfrac{sin(\alpha )}{1 + cos(\alpha )}

\sf \implies \sqrt{\dfrac{1 - cos(\alpha )}{1 + cos(\alpha )} } = \dfrac{sin(\alpha )}{1 + cos(\alpha )}

                                                                                                                         

MORE INFORMATION.

Fundamental trigonometric identities.

(1) = sin²x + cos²x = 1.

(2) = 1 + tan²x = sec²x.

(3) = 1 + cot²x = cosec²x.

Trigonometric ratio of multiple angles.

(1) = sin2x = 2sinx.cosx = 2tanx/1 + tan²x.

(2) = cos2x = cos²x - sin²x = 2cos²x - 1 = 1 - 2sin²x = 1 - tan²x/1 + tan²x.

(3) = tan2x = 2tanx/1 - tan²x.

(4) = sin3x = 3sinx - 4sin³x.

(5) = cos3x = 4cos³x - 3cosx.

(6) = tan3x = 3tanx - tan³x/1 - 3tan²x.

Answered by Anonymous
67

Answer:

To Prove :-

\sf\sqrt{\dfrac {1-cos(\alpha)}{1+cos(\alpha)}}=\dfrac {sin(\alpha)}{1+cos (\alpha)}

Required Proof :-

 \sqrt \dfrac{1 -  \cos \alpha}{1 +  \cos \alpha  }  =  \sqrt{ \dfrac{ \sin \alpha }{1 +  \cos \alpha} }

Solving the LHS

 \sqrt{ \dfrac{1 -  \cos \alpha }{1 +  \cos \alpha } }

 \sqrt{ \dfrac{  \bigg \lgroup1 -  \cos \alpha  \bigg \rgroup \times  \bigg \lgroup1  +  \cos \alpha  \bigg \rgroup}{ \bigg \lgroup1 +  \cos \alpha  \bigg \rgroup \times  \bigg \lgroup1 +  \cos \alpha  \bigg \rgroup}}

Apply Identity

 \bf \pink{(a + b)(a  - b) =  {a}^{2}  -  {b}^{2} }

 \bf \red{(a  + b)(a  + b) = (a + b {)}^{2} }

 \sf \:  \sqrt{ \dfrac{1 -  { \cos }^{2} \alpha  }{ \bigg \lgroup1 +  \cos \alpha {}^{2}   \bigg\rgroup} }

1 - cos² = sin ²

 \sf \sqrt{ \dfrac{sin {}^{2}  \alpha }{ \bigg \lgroup \: 1 +  \cos  \alpha \bigg \rgroup {}^{2} }}

 \bf \red{ \sqrt{ \dfrac{ \sin  \alpha }{ 1 +  \cos \alpha  } }}

Similar questions