Math, asked by rohithkrhoypuc1, 1 month ago

☆BRAINLIEAST QUESTION☆

Answer the question which is in attachment

Moderators ,copy that, Genius rankers, and emerger moderator ​

Attachments:

Answers

Answered by mathdude500
11

\large\underline{\sf{Solution-}}

Given matrix is

\red{\rm :\longmapsto\:A = \begin{gathered}\sf\left[\begin{array}{ccc}1&2& -3\\6&1&4\\3&5& - 3\end{array}\right]\end{gathered}}

To find Adjoint of matrix A, we have to find co - factors.

We know,

\boxed{ \bf \: { c_{ij}  \: =  \:  {( - 1)}^{i \:  +  \: j} \: m_{ij} \: }}

Now,

\rm :\longmapsto\:c_{11} =  {( - 1)}^{1 + 1}\begin{array}{|cc|}\sf 1 &\sf 4  \\ \sf 5 &\sf  - 3 \\\end{array} = ( - 3 - 20) =  - 23

\rm :\longmapsto\:c_{12} =  {( - 1)}^{1 + 2}\begin{array}{|cc|}\sf 6 &\sf 4  \\ \sf 3 &\sf  - 3 \\\end{array} =  - ( - 18 - 12) = 30

\rm :\longmapsto\:c_{13} =  {( - 1)}^{1 + 3}\begin{array}{|cc|}\sf 6 &\sf 1  \\ \sf 3 &\sf 5 \\\end{array} =  (30 - 3) = 27

\rm :\longmapsto\:c_{21} =  {( - 1)}^{2 + 1}\begin{array}{|cc|}\sf 2 &\sf  - 3  \\ \sf 5 &\sf  - 3 \\\end{array} = - ( - 6 + 15) = - 9

\rm :\longmapsto\:c_{22} =  {( - 1)}^{2 + 2}\begin{array}{|cc|}\sf 1 &\sf  - 3  \\ \sf 3 &\sf  - 3 \\\end{array} = ( - 3 + 9) = 6

\rm :\longmapsto\:c_{23} =  {( - 1)}^{2 + 3}\begin{array}{|cc|}\sf 1 &\sf 2  \\ \sf 3 &\sf 5 \\\end{array} = -  (5 - 6) =1

\rm :\longmapsto\:c_{31} =  {( - 1)}^{3 + 1}\begin{array}{|cc|}\sf 2 &\sf  - 3  \\ \sf 1 &\sf 4 \\\end{array} =(8 + 3) =11

\rm :\longmapsto\:c_{32} =  {( - 1)}^{3 + 2}\begin{array}{|cc|}\sf 1 &\sf  - 3  \\ \sf 6 &\sf 4 \\\end{array} = - (4 + 18) = - 22

\rm :\longmapsto\:c_{33} =  {( - 1)}^{3 + 3}\begin{array}{|cc|}\sf 2 &\sf  - 3  \\ \sf 1 &\sf 4 \\\end{array} =(8 + 3) = 11

So,

\rm :\longmapsto\:adjA = \begin{gathered}\sf\left[\begin{array}{ccc} - 23&30&27\\ - 9&6&1\\11& - 22& 11\end{array}\right]\end{gathered}'

\rm :\longmapsto\:adjA = \begin{gathered}\sf\left[\begin{array}{ccc} - 23& - 9&11\\ 30&6& - 22\\27&1& 11\end{array}\right]\end{gathered}

Additional Information : -

If A is a square matrix of order n, then

\boxed{ \rm{  |adjA|  =  { |A| }^{n - 1} }}

\boxed{ \rm{ A \: adjA \:  =  \: (adjA) \: A \:  =  \:  |A| I}}

\boxed{ \rm{  |A'| =  |A|}}

\boxed{ \rm{  | {A}^{ - 1} | =  \frac{1}{ |A| }}}

Similar questions