Math, asked by Anonymous, 10 months ago

BRAINLIEST UR ANS AWARDED DONT MAKE SPAM​

Attachments:

Answers

Answered by EliteSoul
22

Given that a and ß are zeros of quadratic polynomial f(x) = + x - 2

We have to find value of (1/a - 1/ß)

Solution

Given quadratic polynomial :

→ f(x) = x² + x - 2

Now,

→ x² + 2x - x - 2 = 0

→ x(x + 2) - 1(x + 2) = 0

→ (x - 1)(x + 2) = 0

→ (x - 1) = 0 or, (x + 2) = 0

x = 1 or, x = -2

Value of a = 1

Value of ß = -2

Now going to the required equation :

1/a - 1/ß

Putting values of a and ß :

→ 1/1 - 1/(-2)

→ 1 + 1/2

→ (2 + 1)/2

3/2

Required value of (1/a - 1/ß) = 3/2

Answered by ItzShinyQueen13
1

\red {\bf{\underline {Given:-}}}

  \tt{\alpha  \: and \:  \beta  \: are \: the \: zeros \: of \: the \: quadratic \: polynomial \:f(x) =   { {x}^{2} + x - 2} }

\red {\bf{\underline {To\:Find:-}}}

 \tt{The \: value \: of \:  \frac{1}{ \alpha }  -  \frac{1}{ \beta } }

\huge\red {\bf{\underline {Solution:-}}}

According to the question,

 \tt {{x}^{2}  + x - 2 = 0}

⇒ \tt {{x}^{2}   + 2x - x - 2 = 0}

⇒\tt {x(x + 2) - (x + 2) = 0}

⇒\tt {(x + 2)(x - 1) = 0}

⇒\tt {(x + 2) = 0 \:  \: or \:  \: (x - 1) = 0}

⇒\tt {x = -  2 \:  \: or \:  \: x = 1}

\tt {∴ \alpha  =  - 2 \:  \: and \:   \:  \beta  = 1}

Now,

\tt { \frac{1}{ \alpha }  -  \frac{1}{ \beta } }

⇒ \tt {\frac{1}{ - 2}  -  \frac{1}{1} }

⇒ \tt{\frac{1}{- 2}  - 1}

⇒\tt { \frac{ 1 + 2}{-2}}

⇒ \tt {\frac{ 3}{-2}}

\bold\pink{\bf {Answer: -\frac{3}{2}}}

Similar questions