Math, asked by ans81, 1 year ago

BRAINLY ALERT
a =   \frac{ \sqrt{3}  +  \sqrt{2} }{ \sqrt{3}  -  \sqrt{2} } b =  \frac{ \sqrt{3}  -  \sqrt{2} }{ \sqrt{3}  +  \sqrt{2} }
Find value of
 {a}^{2}  +  {b}^{2}

Answers

Answered by BhawnaAggarwalBT
3
<b >hey here is your answer

_________________________________
_________________________________

a = \frac{ \sqrt{3} + \sqrt{2} }{ \sqrt{3} - \sqrt{2} }<br /><br />\\ \\ = \frac{ \sqrt{3} + \sqrt{2} }{ \sqrt{3} - \sqrt{2} } \: \times \: \frac{ \sqrt{3} + \sqrt{2} }{ \sqrt{3} + \sqrt{2} } \\ \\ = \frac{( \sqrt{3} + \sqrt{2} {)}^{2} }{( \sqrt{3} {)}^{2} - ( \sqrt{2} {)}^{2} } \\ \\ = \frac{( \sqrt{3} {)}^{2} + ( \sqrt{2} {)}^{2} + 2 \times \sqrt{3} \times \sqrt{2} }{3 - 2}\\ \\ = \frac{3 + 2 + 2 \sqrt{6} }{1} \\ \\ = 5 + 2 \sqrt{6} \\ \\ \\b = \frac{ \sqrt{3} - \sqrt{2} }{ \sqrt{3} + \sqrt{2} } \\ \\ = \frac{ \sqrt{3} - \sqrt{2} }{ \sqrt{3} + \sqrt{2} } \times \frac{ \sqrt{3} - \sqrt{2} }{ \sqrt{3} - \sqrt{2} } \\ \\ = \frac{( \sqrt{3} - \sqrt{2} {)}^{2} }{( \sqrt{3} {)}^{2} - ( \sqrt{2} {)}^{2} } \\ \\ = \frac{( \sqrt{3} {)}^{2} + ( \sqrt{2} {)}^{2} - 2 \times \sqrt{3} \times \sqrt{2} }{3 - 2} \\ \\ = \frac{3 + 2 - 2 \sqrt{6} }{1} \\ \\ = 5 - 2 \sqrt{6}

now ,

 {a}^{2} + {b}^{2} = (5 + 2 \sqrt{6} {)}^{2} + (5 - 2 \sqrt{6} {)}^{2} \\ \\ = ( {5})^{2} + (2 \sqrt{6} {)}^{2} + 2 \times 5 \times 2 \sqrt{6} +\\ \\ (5 {)}^{2} + (2 \sqrt{6} {)}^{2} - 2 \times 5 \times 2 \sqrt{6} \\ \\ = 25 + 24 + 20 \sqrt{6} + 25 + 24 - 20 \sqrt{6} \\ \\ = 25 + 24 + 25 + 24 \\ \\ = 98

98 answer

_________________________________
_________________________________

hope this helps you

### BE BRAINLY ###

BhawnaAggarwalBT: ok
BhawnaAggarwalBT: plz report my Answer
BhawnaAggarwalBT: lz
BhawnaAggarwalBT: plzzzzzzzzzz
BhawnaAggarwalBT: please
Similar questions