Math, asked by Anonymous, 4 months ago

Brainly ,Aryabhata!!!!

Find the derivative ,BY FIRST PRINCIPAL!

i) 5secx + 4cosx
Step by step explanation

Answers

Answered by Anonymous
13

Explanation:

ㅤㅤㅤㅤㅤ

Let, f(x) = 5secx + 4cosx,

ㅤㅤㅤㅤㅤ

According to the 1st Principal,

ㅤㅤㅤㅤㅤ

\bull \boxed{ \tt \red{f'(x) = lim_{ h \rightarrow0}( \dfrac{f(x + h) - f(x)}{h} ) } }

ㅤㅤㅤㅤㅤ

\leadsto \: \tt \: f'(x) =  lim_{h \rightarrow0} \dfrac{5sec(x + h) + 4cos(x + h) - (5secx +4 cosx)}{h}

ㅤㅤㅤㅤㅤ

\leadsto \: \tt \: f'(x) = 5 lim_{h \rightarrow0}  \dfrac{sec(x + h)  -  (secx)}{h}  + 4lim_{h \rightarrow0}  \dfrac{cos(x + h)  -  (cosx)}{h}

ㅤㅤㅤㅤㅤ

\leadsto \: \tt \: f'(x) = 5 lim_{h \rightarrow0}  \dfrac{1}{h} ( \dfrac{1}{cos(x + h)}  -  \frac{1}{cosx} ) + 4lim_{h \rightarrow0} \dfrac{1}{h}   (cos(x + h) - cosx)

ㅤㅤㅤㅤㅤ

\leadsto \: \tt \: f'(x) = 5 lim_{h \rightarrow0} ( \dfrac{cosx - cos(x + h)}{cosx.cos(x + h)} ) + 4 lim_{h \rightarrow0}  \dfrac{1}{h} (cosx  cosh - sinx sinh - cosx)

ㅤㅤㅤㅤㅤ

\leadsto \: \tt \: f'(x) =  \dfrac{5}{cosx}  lim_{h \rightarrow0}  \dfrac{1}{h} ( \dfrac{ - 2sin( \dfrac{x + x + h}{2})sin( \dfrac{ \cancel{x - x}  -  h}{2} ) }{ cos(x + h) } ) + 4 lim_{h \rightarrow0} \dfrac{1}{h} ( - cosx( 1- cosh) - sinx.sinh)

ㅤㅤㅤㅤㅤ

 \leadsto \: \tt \: f'(x) =  \dfrac{5}{cosx}  lim_{h \rightarrow0}  \dfrac{1}{h} ( \dfrac{ - 2sin( \dfrac{2x+ h}{2})sin( \dfrac{ -  h}{2} ) }{ cos(x + h) } )  + 4( - cosx \: lim_{ h \rightarrow0}( \dfrac{1 - cosh}{h} ) - sinx  \:   lim_{h \rightarrow0} \dfrac{sinh}{h} )

ㅤㅤㅤㅤㅤ

 \leadsto \: \tt \: f'(x) =  \dfrac{5}{cosx}  lim_{h \rightarrow0}  \dfrac{1}{h}( \dfrac{ sin( \dfrac{2x + h}{2} ). \dfrac{sin( \dfrac{h}{2}) }{ \dfrac{h}{2} } }{cos(x + h)}) + 4( - cosx.0  - sinx.1)

ㅤㅤㅤㅤㅤ

 \leadsto \: \tt \: f'(x) =  \dfrac{5}{cosx}( lim_{h \rightarrow0} \dfrac{sinx \dfrac{(2x + h)}{2}}{cos(x + h)} . lim_{h \rightarrow0}(   \dfrac{sin( \dfrac{h}{2} )}{( \dfrac{h}{2} )} ) - 4sinx

ㅤㅤㅤㅤㅤ

\leadsto \: \tt \: f'(x) =  \dfrac{5}{cosx} . \dfrac{sinx}{cosx} .1 - 4sinx

ㅤㅤㅤㅤㅤ

 \leadsto \: \tt \: f'(x) =  5 \dfrac{1}{cosx} .tanx - 4sinx

ㅤㅤㅤㅤㅤ

\leadsto \:   \underline{\boxed{\tt \green{ f'(x) =  5secx .tanx - 4sinx}}}

Similar questions