BRAINLY Brain Teaser !!
Attachments:
Answers
Answered by
3
Heya user,
Consider,
---> 10 | ( x + 1 )
---> 9 | ( x + 1 )
---> 8 | ( x + 1 )
---> 7 | ( x + 1 )
---> 6 | ( x + 1 )
---> 5 | ( x + 1 )
---> 4 | ( x + 1 )
---> 3 | ( x + 1 )
---> 2 | ( x + 1 )
And so, x = LCM [ 2,3,4,5,6,7,8,9 ] - 1;
=> x = 2520 - 1 = 2519 ;
Verifying --> 2519 = 2 ( 1259 ) + 1;
---------------->2519 = 3 ( 839 ) + 2;
---------------->2519 = 4 ( 629 ) + 3;
---------------->2519 = 5 ( 503 ) + 4;
---------------->2519 = 6 ( 419 ) + 5;
---------------->2519 = 7 ( 359 ) + 6;
---------------->2519 = 8 ( 314 ) + 7;
---------------->2519 = 9 ( 279 ) + 8;
And hence, we get your Mind no. as 2519;
Consider,
---> 10 | ( x + 1 )
---> 9 | ( x + 1 )
---> 8 | ( x + 1 )
---> 7 | ( x + 1 )
---> 6 | ( x + 1 )
---> 5 | ( x + 1 )
---> 4 | ( x + 1 )
---> 3 | ( x + 1 )
---> 2 | ( x + 1 )
And so, x = LCM [ 2,3,4,5,6,7,8,9 ] - 1;
=> x = 2520 - 1 = 2519 ;
Verifying --> 2519 = 2 ( 1259 ) + 1;
---------------->2519 = 3 ( 839 ) + 2;
---------------->2519 = 4 ( 629 ) + 3;
---------------->2519 = 5 ( 503 ) + 4;
---------------->2519 = 6 ( 419 ) + 5;
---------------->2519 = 7 ( 359 ) + 6;
---------------->2519 = 8 ( 314 ) + 7;
---------------->2519 = 9 ( 279 ) + 8;
And hence, we get your Mind no. as 2519;
Answered by
1
Let
10(x+1)
9(x+1)
8(x+1)
7(x+1)
6(x+1)
5(x+1)
4(x+1)
3(x+1)
2(x+1)
Now, LCM = x = {2*4*5*7*9} - 1
-1 is taken because when we divide, a number less is the remainder.
Therefore, 2520 - 1 = 2519
Verify,
10(x+1) = 10(2519) + 1
9(x+1) = 9(2519) + 1
8(x+1) = 8(2519) + 1
7(x+1) = 7(2519) + 1
6(x+1) = 6(2519) + 1
5(x+1) = 5(2519) + 1
4(x+1) = 4(2519) + 1
3(x+1) = 3(2519) + 1
2(x+1) = 2(2519) + 1
Hence the mastermind is thinking about the no. 2519
10(x+1)
9(x+1)
8(x+1)
7(x+1)
6(x+1)
5(x+1)
4(x+1)
3(x+1)
2(x+1)
Now, LCM = x = {2*4*5*7*9} - 1
-1 is taken because when we divide, a number less is the remainder.
Therefore, 2520 - 1 = 2519
Verify,
10(x+1) = 10(2519) + 1
9(x+1) = 9(2519) + 1
8(x+1) = 8(2519) + 1
7(x+1) = 7(2519) + 1
6(x+1) = 6(2519) + 1
5(x+1) = 5(2519) + 1
4(x+1) = 4(2519) + 1
3(x+1) = 3(2519) + 1
2(x+1) = 2(2519) + 1
Hence the mastermind is thinking about the no. 2519
subhashree5:
hii
Similar questions