Math, asked by Ayushthegreat01, 26 days ago

༒ Brainly Genius
\huge\underbrace{\underline{\mathtt{\cyan{†Q᭄}\pink{U}\green{S\  \textless \ br /\  \textgreater \ E}\blue{S}\purple{T}\orange{ION࿐꧂}\blue{}}}}
Solve the following equation in Transposition Method & check the result:-
 \frac{2x - 1}{3}  + 1 =  \frac{x - 2}{3}  + 2
NOTE:-

⇝TRY TO USE Latex.​

Answers

Answered by shabanapasha
0

Answer:

Example 1: Solve x2−x3=8

Solution: we have, x2−x3=8

LCM of denominators 2 and 3 on L.H.S. is 6. So, 3x−2x6=8

Multiplying both sides by 6, we get

3x−2x=6×8x=48

Check Substituting x=48 in the given equation, we get

LHS=482−483LHS=24−16LHS=8

Therefore L.H.S. =R.H.S. Hence, x =48 is the solution of the given equation.

Answered by Anonymous
39

Answer:

{\large{\underline{\underline{\bf{Cocept \:  : - }}}}}

We've to calculate the value of x. Here, we'll be using the transposition method to solve this equation. In transposition method, we transpose the values form LHS to RHS. While transposing the values, we change their arithmetic operators.

\begin{gathered}\end{gathered}

{\large{\underline{\underline{\bf{Solution \:  : - }}}}}

Solve the following equation in Transposition Method & check the result:-

 \dashrightarrow{\bf{\dfrac{2x - 1}{3} + 1 = \dfrac{x - 2}{3} + 2}}

  • Transporting LHS to RHS.

{\dashrightarrow{\sf{\dfrac{2x - 1}{3}  -  \dfrac{x - 2}{3}   =  2 - 1 }}}

{\dashrightarrow{\sf{\dfrac{2x - 1}{3}  -  \dfrac{x - 2}{3}   =  1 }}}

{\dashrightarrow{\sf{\dfrac{2x - 1 - x - 2}{3}  =  1 }}}

{\dashrightarrow{\sf{\dfrac{x + 1}{3}  =  1 }}}

{\dashrightarrow{\sf{{x + 1} =  1  \times 3}}}

{\dashrightarrow{\sf{{x + 1} = 3}}}

{\dashrightarrow{\sf{x = 3 - 1}}}

{\dashrightarrow{\sf{x = 2}}}

\bigstar{\red{\underline{\boxed{\bf{x = 2}}}}}

The value of x is 2.

\begin{gathered}\end{gathered}

{\large{\underline{\underline{\bf{Verification\:  : - }}}}}

 \dashrightarrow{\bf{\dfrac{2x - 1}{3} + 1 = \dfrac{x - 2}{3} + 2}}

  • Substuting the values of (x = 2).

{\dashrightarrow{\sf{\dfrac{(2 \times 2)- 1}{3} + 1 = \dfrac{2 - 2}{3} + 2}}}

{\dashrightarrow{\sf{\dfrac{4- 1}{3} + 1 = \dfrac{ 0}{3} + 2}}}

{\dashrightarrow{\sf{\dfrac{3}{3} + 1 =0 + 2}}}

{\dashrightarrow{\sf{\dfrac{3 + (1 \times 3)}{3} = 2}}}

{\dashrightarrow{\sf{\dfrac{3 + 3}{3} = 2}}}

{\dashrightarrow{\sf{\dfrac{6}{3} = 2}}}

{\dashrightarrow{\sf{\cancel\dfrac{6}{3} = 2}}}

{\dashrightarrow{\sf{2 = 2}}}

\bigstar{\red{\underline{\boxed{\bf{LHS = RHS}}}}}

Hence Verified!

Similar questions