brainly.in find the values of x and y satisfying the given equation . x^2+y^2-4x=0 and x+y=4
Answers
Step-by-step explanation:
x^2+y^2-4x=0
x^2+y^2=4x
(x+y) ^2-2xy=4x
4^2-2xy=4x {(x+y) =4}
16-2xy=4x
16=4x+2xy
Dividing by 2
8=2x+xy
8=x(2+y)
Now, x+y=4
y=4-x
put the value of y in 8=x(2+y)
8=x(2+4-x)
8=x(6-x)
8=6x-x^2
x^2-6x+8=0
Solving the equation by splitting the middle term
x^2-4x-2x+8=0
x(x-4) -2(x-4) =0
(x-2) (x-4) =0
x=2 or x=4
If x=2 , y=2
If x=4 , y=0
Answer:
Step-by-step explanation:
let the fraction be x / y
then acc. to ques.
x + y + 3= 2y
x = y - 3 ............. (i)
also
x-1/y-1 = y/2y = 1/2
x - 1 =( y-1) / 2
x = ( (y - 1) / 2 ) +1
x = (y +1) / 2
2x = y + 1
2x - y = 1 ............... (ii)
Subtituting the value of (i) in (ii) we have
2 ( y - 3 ) - y =1
2y - 6 -y = 1
y - 6 = 1
y = 7
x = y - 3
x = 7 - 3
x = 4
Therefore the fraction is x / y = 4 / 7
IF IT IS CORRECT MARK BRAINLIEST ✌️