Math, asked by guptaananya2005, 1 month ago

Brainly Moderators

Brainly

Best Users

Geniuses

Please help me in this

Solve the logarithmic inequality for real values of x

 log_{0.04}(x - 1)  \geqslant  log_{0.2}(x - 1)

Answers

Answered by mathdude500
4

\large\underline{\sf{Solution-}}

Given Logarithmic inequality is

\rm :\longmapsto\: log_{0.04}(x - 1) \geqslant  log_{0.2}(x - 1)

can be rewritten as

\rm :\longmapsto\: log_{ {(0.2)}^{2} }(x - 1) \geqslant  log_{0.2}(x - 1)

We know,

 \red{ \boxed{ \sf{ \: log_{ {x}^{y} }( {w}^{z} )  =  \frac{z}{y}  log_{x}(w) }}}

So, using this, we get

\rm :\longmapsto\:\dfrac{1}{2}log_{0.2}(x - 1) \geqslant log_{0.2}(x - 1)

\rm :\longmapsto\:log_{0.2}(x - 1) \geqslant 2log_{0.2}(x - 1)

\rm :\longmapsto\:log_{0.2}(x - 1)  -  2log_{0.2}(x - 1) \geqslant 0

\rm :\longmapsto\: -  \: log_{0.2}(x - 1) \geqslant 0

\rm :\longmapsto\: \: log_{0.2}(x - 1) \leqslant 0

We know,

\red{ \boxed{ \sf{ 0 < a < 1 \: and \: \: log_{a}(b) \leqslant c \:  \implies \: b \geqslant  {a}^{c}}}}

So, using this, we get

\rm :\longmapsto\:x - 1 \geqslant  {(0.2)}^{0}

\rm :\longmapsto\:x - 1 \geqslant  1

\rm :\longmapsto\:x  \geqslant  1 + 1

\rm :\longmapsto\:x  \geqslant  2

\bf\implies \:x \:  \in \: [2, \infty )

Additional Information :-

\red{ \boxed{ \sf{ \: log_{a}(a)  = 1}}}

\red{ \boxed{ \sf{ \: log_{ {a}^{p} }( {a}^{q} )  =  \frac{q}{p} }}}

\red{ \boxed{ \sf{ \: log_{x}(y) =  \frac{1}{ log_{y}(x) }}}}

\red{ \boxed{ \sf{ \: {x}^{ log_{x}(y) }  = y}}}

\red{ \boxed{ \sf{ \: {x}^{ zlog_{x}(y) }  =  {y}^{z} }}}

Similar questions