Math, asked by Anonymous, 1 month ago

❐ Brainly Moderators
❐ Brainly Stars
❐ Brainly Best Users

Attachments:

Answers

Answered by MathCracker
114

Question :-

\rm{ \displaystyle \lim_{x \to 0 }  \rm{\frac{  \sqrt{a + x}  -  \sqrt{a} }{x} }}

Solution :-

Given :

 \rm{ \displaystyle \lim_{x \to 0 }  \rm{\frac{  \sqrt{a + x}  -  \sqrt{a} }{x} }}

  \rm{as \:  x \to 0 \: it \: is \:  \frac{0}{0}  \: \: form } \\

So using Rationalization,

\sf:\longmapsto{\displaystyle \lim_{x \to 0}  \rm{\frac{ \sqrt{a + x} -  \sqrt{a}  }{x} } \times  \frac{ \sqrt{a + x}  +  \sqrt{a} }{ \sqrt{a + x}  +  \sqrt{a} } }

\sf:\longmapsto{\displaystyle \lim_{x \to 0} \rm{ \frac{ (\sqrt{a + x} -  \sqrt{a}  )( \sqrt{a + x}  +  \sqrt{a}) }{x( \sqrt{a + x} +  \sqrt{a}  )} }}

\sf:\longmapsto{\displaystyle \lim_{x \to 0} \rm{ \frac{( \sqrt{a + x } ) {}^{2} - ( \sqrt{a}  ) {}^{2} }{ \sqrt{ax + x {}^{2} } +  \sqrt{ax}  } }}

:\longmapsto{\displaystyle \lim_{x \to 0} \rm{ \frac{a + x - a}{2 \sqrt{ax }  + x} } }

As we know x = 0/0 = 1

:\longmapsto{\displaystyle \lim_{x \to 0}  \rm{ \frac{1}{2 \sqrt{ax}  + x} }}

Hence,

 \bigstar \: {\boxed{\rm{\red{\displaystyle \lim_{x \to 0} \rm{ \frac{1}{2 \sqrt{ax}  + x} }}}}}

▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬

Answered by SPÏDËYRØHÏT2945
0

Answer:

Step-by-step explanation:

1/2√a

I HOPE YOU WILL LIKE IT THANKS

PLS MAKE ME AS BRAINLIEST BROTHER ❤️

Similar questions