❐ Brainly Moderators
❐ Brainly Stars
❐ Brainly Best Users
A circular park of radius 20 m is situated in a colony. Three boys Ankur, Syed and David are sitting at equal distances on its boundary each having a toy telephone in his hands to talk to each other. Find the length of the string of each phone?
Answers
Answer:
Let Ankur be represented as A, Syed as S and David as D.
The boys are sitting at an equal distance.
Hence, △ASD is an equilateral triangle.
Let the radius of the circular park be r meters.
∴OS=r=20m.
Let the length of each side of △ASD be x meters.
Draw AB⊥SD
In △ABS,∠B=90°
By Pythagoras theorem,
Now, AB=AO+OB
OB=AB−AO
Hence, Vertified
Solution:—
- 20√3 m
Step by Step Explanation:—
Given,
→ The positions of Ankur, Syed and David are represented as A, B and C respectively.
→ As they are sitting at equal distances, the triangle is equilateral
→ AD ⊥ BC is drawn.
→ AD is the median of ΔABC and it passes through the centre O.
→ O is the centroid of the ΔABC. OA is the radius of the triangle.
→ OA = 2/3 AD
Let the side of a triangle a metres then BD = a/2 m.
On applying Pythagoras theorem in ΔABD,
→ AB² = BD² + AD²
→ AD² = AB² - BD²
→ AD² = a² -( a/2)²
→ AD² = 3a²/4
→ AD = √3a/2
OA = 2/3 AD
→ 20 m = 2/3 × √3a/2
→ a = 20√3 m
Answer
The length of the string of the toy is 20√3 m.