Math, asked by okoksksjssjjw, 14 days ago

Brainly moderators
Brainly stars
Brainly best users

high quality answer needed


question: If x=1-root(2),then find the value of (x-1/x)whole square

give clear explanation for class 9

answer only if you know or else you ll be reported​

Answers

Answered by MysticSohamS
1

Answer:

hey here is your solution

pls mark it as brainliest

Step-by-step explanation:

to \: find =  \\  \\ (x -  \frac{1}{x}  \: ) {}^{2}  \\  \\ given =  \\ x = 1 -  \sqrt{2}  \\  \\ thus \: then \\  \\( x -  \frac{1}{x}  \: ) {}^{2}  = (1 -  \sqrt{2}  \:  - \:   \frac{1}{1 -  \sqrt{2} }  \: ) {}^{2}  \\  \\  =  \frac{( 1 -  \sqrt{2} ) {}^{2}  - 1}{1 -  \sqrt{2} }  \\  \\  =  \frac{1 + 2 - 2 \sqrt{2}  - 1}{1 -  \sqrt{2} }  \\  \\  =  \frac{2 - 2 \sqrt{2} }{1 -  \sqrt{2} }  \\  \\  =  \frac{2(1 -  \sqrt{2} )}{1 -  \sqrt{2} }  \\  \\  = 2

Answered by ᏟɛƖΐᴎɛ
0

Step-by-step explanation:

\begin{gathered}to \: find = \\ \\ (x - \frac{1}{x} \: ) {}^{2} \\ \\ given = \\ x = 1 - \sqrt{2} \\ \\ thus \: then \\ \\( x - \frac{1}{x} \: ) {}^{2} = (1 - \sqrt{2} \: - \: \frac{1}{1 - \sqrt{2} } \: ) {}^{2} \\ \\ = \frac{( 1 - \sqrt{2} ) {}^{2} - 1}{1 - \sqrt{2} } \\ \\ = \frac{1 + 2 - 2 \sqrt{2} - 1}{1 - \sqrt{2} } \\ \\ = \frac{2 - 2 \sqrt{2} }{1 - \sqrt{2} } \\ \\ = \frac{2(1 - \sqrt{2} )}{1 - \sqrt{2} } \\ \\ = 2\end{gathered}

Similar questions