Math, asked by Anonymous, 11 hours ago

❐ Brainly Moderators
❐ Brainly Stars
❐ Brainly Best Users

Prove that

Sin theta + Cos theta / Sin theta - Cos theta + Sin theta - Cos theta/Sin theta + Cos theta = 2Sec²theta/Tan²theta - 1​

Answers

Answered by mathdude500
39

\large\underline{\sf{Solution-}}

Consider,

\rm :\longmapsto\:\dfrac{sin\theta  + cos\theta }{sin\theta  - cos\theta }  + \dfrac{sin\theta  - cos\theta }{sin\theta  + cos\theta }

On taking LCM, we get

\rm \:  =  \: \dfrac{ {(sin\theta  + cos\theta )}^{2}  +  {(sin\theta  - cos\theta )}^{2} }{(sin\theta  + cos\theta )(sin\theta  - cos\theta )}

We know,

\boxed{ \bf{ \: {(x + y)}^{2} +  {(x - y)}^{2}  = 2( {x}^{2} +  {y}^{2} )}}

and

\boxed{ \bf{ \:(x + y)(x - y) =  {x}^{2} -  {y}^{2}}}

So, on using these Identities, we get

\rm \:  =  \: \dfrac{2( {sin}^{2}\theta  +  {cos}^{2}\theta )}{ {sin}^{2}\theta  -  {cos}^{2}\theta}

We know,

\boxed{ \bf{ \: {sin}^{2} x +  {cos}^{2} x = 1}}

So, using this identity, we get

\rm \:  =  \: \dfrac{2 \times 1}{ {sin}^{2} \theta  -  {cos}^{2} \theta }

\rm \:  =  \: \dfrac{2}{ {sin}^{2} \theta  -  {cos}^{2} \theta }

Now,

 \sf \: Divide \:  numerator \:  and \:  denominator  \: by \:  {cos}^{2}x, \: we \: get

\rm \:  =  \: \dfrac{\dfrac{2}{ {cos}^{2} \theta } }{\dfrac{ {sin}^{2}\theta  }{ {cos}^{2} \theta }  - 1}

We know,

\boxed{ \bf{ \: \frac{1}{cos\theta } = sec\theta }}

and

\boxed{ \bf{ \: \frac{sin\theta }{cos\theta }  = tan\theta }}

So, using these, we get

\rm \:  =  \: \dfrac{2 {sec}^{2} \theta }{ {tan}^{2} \theta  - 1}

Hence,

 \red{\rm :\longmapsto\:\dfrac{sin\theta  + cos\theta }{sin\theta  - cos\theta }  + \dfrac{sin\theta  - cos\theta }{sin\theta  + cos\theta } =  \dfrac{2 {sec}^{2}\theta  }{ {tan}^{2} \theta  - 1}}

Additional Information:-

Relationship between sides and T ratios

sin θ = Opposite Side/Hypotenuse

cos θ = Adjacent Side/Hypotenuse

tan θ = Opposite Side/Adjacent Side

sec θ = Hypotenuse/Adjacent Side

cosec θ = Hypotenuse/Opposite Side

cot θ = Adjacent Side/Opposite Side

Reciprocal Identities

cosec θ = 1/sin θ

sec θ = 1/cos θ

cot θ = 1/tan θ

sin θ = 1/cosec θ

cos θ = 1/sec θ

tan θ = 1/cot θ

Co-function Identities

sin (90°−x) = cos x

cos (90°−x) = sin x

tan (90°−x) = cot x

cot (90°−x) = tan x

sec (90°−x) = cosec x

cosec (90°−x) = sec x

Fundamental Trigonometric Identities

sin²θ + cos²θ = 1

sec²θ - tan²θ = 1

cosec²θ - cot²θ = 1

Similar questions
Math, 8 months ago