Physics, asked by mihir51, 1 month ago

❐ Brainly Moderators
❐ Brainly Stars
❐ Brainly Best Users

Question:-

An A.C circuit having an inductor and a resistor in series draws a power of 560 W from an A.C source marked 210 V - 60 Hz. The power factor of the circuit is 0.8. Calculate the impedance of the circuit and the inductance of the inductor.

Help ASAP!!!
No SPAM!!!

Answers

Answered by Bᴇʏᴏɴᴅᴇʀ
164

Answer:-

\red{\bigstar} The impedance of the circuit is \large\leadsto\boxed{\rm\purple{63 \: \Omega}}

⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀

\red{\bigstar} The inductance of the inductor is \large\leadsto\boxed{\rm\purple{0.1 \: H}}

⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀

Solution:-

We know,

The average power over a complete cycle is given by

\pink{\bigstar} \large\underline{\boxed{\bf\green{P = E_{rms} \times i_{rms} \times cos \varnothing}}}

here,

  • cos is the power factor.

⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀

\sf i_{rms} = \dfrac{P}{E_{rms} \times cos \varnothing}

⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀

\sf i_{rms} = \dfrac{560 \: W}{210 \: V \times 0.8}

⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀

\sf \dfrac{10}{3} A

⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀

The impedance of the circuit is

\pink{\bigstar} \large\underline{\boxed{\bf\green{Z = \dfrac{E_{rms}}{i_{rms}}}}}

⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀

\sf \dfrac{210 \: V}{(10/3)A}

⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀

\large{\underline{\underline{\bf\red{63 \: \Omega}}}}

⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀

The power is consumed in R only. Therefore,

\pink{\bigstar} \large\underline{\boxed{\bf\green{P = (i_{rms})^2 \: R}}}

⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀

\sf R = \dfrac{P}{(i_{rms})^2}

⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀

\sf R = \dfrac{560 \: W}{(\frac{10}{3} A)^2}

⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀

\large\bf{50.4 \: \Omega}

⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀

⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀

We know, the impedance of an L-R Circuit is

⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀

\pink{\bigstar} \large\underline{\boxed{\bf\green{Z = \sqrt{R^2 + (\omega L)^2}}}}

⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀

\sf (\omega L)^2 = Z^2 - R^2

⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀

\sf (\omega L)^2 = (63 \: \Omega)^2 - (50.4 \: \Omega)^2

⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀

\sf (\omega L)^2 = (63 + 50.4) \Omega \times (63 - 50.4) \Omega

⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀

\sf (\omega L)^2 = 113.4 \Omega \times 12.6 \Omega

⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀

\sf (\omega L)^2 = 1428.84 (\Omega)^2

⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀

\sf (\omega L) = \sqrt{1428.84}

⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀

\sf (\omega L) = 37.8 \: \Omega

⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀

\sf L = \dfrac{37.8 \: \Omega}{2 \pi f}

⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀

\sf L = \dfrac{37.8 \Omega}{2 \times 3.14 \times 60 \: s^{-1}}

⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀

\large{\underline{\underline{\bf\red{0.1 \: H}}}}


Ataraxia: Amazinggggg!!!! ^^
MasterDhruva: Awesome!!
Answered by Itzheartcracer
103

Given :-

An A.C circuit having an inductor and a resistor in series draws a power of 560 W from an A.C source marked 210 V - 60 Hz. The power factor of the circuit is 0.8

To Find :-

Impedance

Inductance

Solution :-

We know that

\sf \bar{P} =V_{rms}\times I_{rms}\times cos(\theta)

\sf 560=210\times I_{rms}\times 0.8

\sf 560=168\times I_{rms}

\sf\dfrac{560}{168}=I_{rms}

\sf 3.33=I_{rms}

Now

\sf Impedane=\dfrac{V_{rms}}{I_{rms}}

\sf Impedane=\dfrac{210}{3.33}

\sf Impedane=\dfrac{2100}{333}

\sf Impedane\approx 63\;\Omega

\sf P=(I_{rms})^2\times R

\sf 560=3.33(R)

\sf\dfrac{560}{3.33}=R

\sf\dfrac{5600}{333}=R

\sf 50.4\;\Omega

Now

\sf Z^2=R^2+\omega L^2

\sf 63^2=50.4^2-\omega L^2

\sf 3969=2540.16+\omega L^2

\sf 3969-2540.16=\omega L^2

\sf 1428.84=\omega L^2

\sf \sqrt{1428.84} =\omega L^2

\sf 37.8=\omega L

Now

\sf Inductance = \dfrac{\omega L}{2\pi f}

\sf Inductance = \dfrac{37.8}{2\times\dfrac{22}{7}\times60}

\sf Inductance = \dfrac{37.8}{\dfrac{44}{7}\times60}

\sf Inductance = \dfrac{37.8}{377}

\sf Inductance = 0.1\;H

Similar questions