❐ Brainly Moderators
❐ Brainly Stars
❐ Other Best Users...
$ \Large \mathtt \red{Question :}$
Find the general solution for $ \rm{cot^{2}\theta + \frac{3}{sin\theta}+3 = 0}$.
Help ASAP!!!
No SPAM!!!
Answers
We know that cot = cos/sin so put that value over here which will give you the following equation ,
Now by using the first identity of trigonometry we get here ,
Or
Now use this value here ,
Now multiply LHS with sin²theta
We can write it as ,
- = (2 sin theta + 1 )( sin theta + 1 ) = 0
- = sin theta = - 1/2 or - 1
Given :-
- Cot²A + 3/SinA + 3 = 0
To Find :-
- General Solution for A = ?
Solution :-
- To calculate the solution at first we have to simplify by simplifying expression by applying formula.
Calculation begins :-
⇒ Cot²A + 3/SinA + 3 = 0
⇒ Cos²A/Sin²A + 3/SinA + 3/1 = 0
⇒ Cos²A + 3SinA + 3Sin²A/Sin²A = 0
⇒ Cos² A + 3SinA + 3Sin²A = 0
⇒ Cos²A + 3SinA + Sin²A + 2Sin²A = 0
⇒ Cos²A + Sin²A + 3SinA + 2Sin²A = 0
- Cos²A + Sin²A = 1
⇒ 2Sin²A + 3SinA + 1 = 0
- Splitting the middle term here :-
⇒ 2Sin²A + 2SinA + SinA + 1 = 0
⇒ 2SinA(SinA + 1) + 1(SinA + 1) = 0
⇒ (2SinA + 1)(SinA + 1) = 0
- Now calculate general Solution for A :-
⇒ 2SinA + 1 = 0 ⇒ SinA = -1/2
⇒ SinA = -(π/6) ⇒ A = nπ + (-1)^n (-π/6)
⇒ SinA + 1 = 0 ⇒ SinA = -1
⇒ SinA = -(π/2) ⇒ A = nπ + (-1)^n (-π/2)
Hence,
- General Solution for this expression :-
⇒ A = nπ + (-1)^n (-π/6) or nπ + (-1)^n (-π/2)