Math, asked by MrPlatinum, 1 month ago

❐ Brainly Moderators
❐ Brainly Stars
❐ Other Best Users...
 \\
$ \Large \mathtt \red{Question :}$
Find the general solution for $ \rm{cot^{2}\theta + \frac{3}{sin\theta}+3 = 0}$.
 \\
Help ASAP!!!
No SPAM!!!​

Answers

Answered by Anonymous
234
  • \sf\pink{Given\::cot^{2}\theta\:+\:\frac{3}{\sin\theta}\:+\:3\:=\:0}

  • \sf\blue{To\:Find\::General\: Solution\:of\:this\: equation}

\sf\red{Solution\::}

  • \sf{\cot^{2}\theta\:+\:\frac{3}{\sin\theta}\:+\:3\:=\:0}

We know that cot = cos/sin so put that value over here which will give you the following equation ,

  • \sf{\frac{\cos^2\theta}{\sin^2\theta}\:+\:\frac{3}{\sin\theta}\:+\:3\:=\:0}

Now by using the first identity of trigonometry we get here ,

  • \sf{\cos^2\theta\:+\:\sin^2\theta\:=\:1}

Or

  • \sf{\cos^2\theta\:=\:1-\:\sin^2\theta\:}

Now use this value here ,

  • \sf{\frac{1\:-\:\sin^2\theta}{\sin^2\theta}\:+\:\frac{3}{\sin\theta}\:+\:3\:=\:0}

Now multiply LHS with sin²theta

  • \sf{1\:-\:\sin^2\theta\:+\:3\sin\theta\:+\:3\sin^2\theta\:=\:0}

  • \sf{1\:+\:+\:3\sin\theta\:+\:2\sin^2\theta\:=\:0}

We can write it as ,

  • \sf{2\sin^2\theta\:+\:2\sin\theta\:+\:\sin\theta\:+\:1\:=\:0}

  • = (2 sin theta + 1 )( sin theta + 1 ) = 0

  • = sin theta = - 1/2 or - 1

  • \sf{\theta\:=\:n\pi\:+\:(-1)^n\:\frac{-\pi}{6}\:and\:\theta\:=\:n\pi\:+\:(-1)^n\:\frac{-\pi}{2}}

Clαrissα: Awesome! <3
Uriyella: Nice. :)
Answered by mddilshad11ab
351

Given :-

  • Cot²A + 3/SinA + 3 = 0

To Find :-

  • General Solution for A = ?

Solution :-

  • To calculate the solution at first we have to simplify by simplifying expression by applying formula.

Calculation begins :-

⇒ Cot²A + 3/SinA + 3 = 0

⇒ Cos²A/Sin²A + 3/SinA + 3/1 = 0

⇒ Cos²A + 3SinA + 3Sin²A/Sin²A = 0

⇒ Cos² A + 3SinA + 3Sin²A = 0

⇒ Cos²A + 3SinA + Sin²A + 2Sin²A = 0

⇒ Cos²A + Sin²A + 3SinA + 2Sin²A = 0

  • Cos²A + Sin²A = 1

⇒ 2Sin²A + 3SinA + 1 = 0

  • Splitting the middle term here :-

⇒ 2Sin²A + 2SinA + SinA + 1 = 0

⇒ 2SinA(SinA + 1) + 1(SinA + 1) = 0

⇒ (2SinA + 1)(SinA + 1) = 0

  • Now calculate general Solution for A :-

⇒ 2SinA + 1 = 0 ⇒ SinA = -1/2

⇒ SinA = -(π/6) ⇒ A = nπ + (-1)^n (-π/6)

⇒ SinA + 1 = 0 ⇒ SinA = -1

⇒ SinA = -(π/2) ⇒ A = nπ + (-1)^n (-π/2)

Hence,

  • General Solution for this expression :-

A = nπ + (-1)^n (-π/6) or nπ + (-1)^n (-π/2)


Clαrissα: Nice! (:
Uriyella: Nice.
mddilshad11ab: Thanks
Similar questions