Math, asked by MrPlatinum, 1 month ago

❐ Brainly Moderators
❐ Brainly Stars
❐ Other Best Users...
 \\
$ \Large \mathtt \red{Question :}$
Prove That :
 \rm{ {cos}^{2}x  +  {cos}^{2}( x  + \frac{\pi}{3} ) +  {cos}^{2}(x -  \frac{\pi}{3}) =  \frac{3}{2}    } \\
 \\
Help ASAP!!!
No SPAM!!!

Answers

Answered by mddilshad11ab
221

Given :-

Cos²X + Cos²(x + π/3) + Cos²(x - π/3) = 3/2

To Show :-

  • L.H.S = R.H.S

Solution :-

  • By applying trigonometry ratio :-

Cos²X + Cos²(x + π/3) + Cos²(x - π/3)

  • Applying formula here :-
  • Cos2x = 2cos²x - 1
  • 2cos²x = Cos2x + 1

⇒ 1 + Cos2x/2 + 1 + cos(2x + 2π/3)/2 + 1 + cos(2x - 2π/3)/2

⇒ 1/2[ 1 + Cos2x + 1 + cos(2x + 2π/3) + 1 + cos(2x - 2π/3)]

⇒ 1/2[3 + Cos2x + Cos(2x + 2π/3) + Cos(2x - 2π/3)]

  • Using Cos(x + y) = Cosx + cosy
  • Cosx + cosy = 2cos(x + y/2) × Cos(x - y/2)
  • X = 2x + 2π/3 ,. Y = 2x - 2π/3

⇒ 1/2[3 + cos2x + 2Cos(2x + 2π/3 + 2x - 2π/3/2) * Cos(2x + 2π/3 - 2x + 2π/3/2)]

⇒ 1/2[3 + Cos2x + 2cos(4x/2) * Cos({4π/3}/2)]

⇒ 1/2[3 + Cos2x + 2cos2x * cos(2π/3)]

  • Using Cos 2π/3 = Cos(π - π/3)
  • Cos( π - x) = - Cosx here x = theta
  • - Cosx = -1/2

⇒ 1/2[3 + cos2x + 2cos2x *(-1/2)]

⇒ 1/2[3 + Cos2x - 2co2x * 1/2]

⇒ 1/2[3 + Co2x - Cos2x]

⇒ 1/2[3]

⇒ 3/2

Hence, proved L.H.S = R.H.S

Answered by Anonymous
211

Answer:

Given:-

  •  {cos}^{2} x +  {cos}^{2} (x +  \frac{\pi}{3} ) +  {cos}^{2} (x   -   \frac{\pi}{3}  )=  \frac{3}{2} here we can do this method easily

To prove :-

  • Here we should find LHS=RHS.

Explanation :-

  • Here we can apply trigonometric ratio property we get value so,
  • cos2x = 2 {cos}^{2} x - 1
  • 2 {cos}^{2} x = cos2x + 1
  •  \frac{1}{2} (1 + cos2x + 1 + cos(2x +  \frac{2\pi}{3} ) + 1  + cos(2x -  \frac{2\pi }{3} )
  •  \frac{1}{2} (1 + cos2x + 1 + cos(2x +  \frac{2\pi}{3} ) + 1 + cos(2x -  \frac{2\pi}{3} )
  •  \frac{1}{2} (3 + cos2x + cos(2x +  \frac{2\pi}{3} ) + cos(2x -  \frac{2\pi}{3} )
  • Here by using ,
  • cos(x + y) = cos \: x + cos \: y
  • cos \: x + cos \: y = 2cos(x +  \frac{y}{2} ) \times cos(x -  \frac{y}{2} )
  • here i will answer it direct ok.
  • Using
  • Cos 2pi/3=cos (pi-pi/3)

  •  \frac{1}{2} (3 + cos2x + 2cos( \frac{4x}{2} )
  •  \frac{1}{2} (3 + cos2x + 2cos( \frac{4x}{2} ) \times cos(  \frac{ \frac{4x}{3} }{2} )
  •  \frac{1}{2} (3 + cos \: 2x + 2cos2x \times cos \frac{2\pi}{3}
  •  \frac{1}{2} (3 + cos2x + 2cos2x \times  \frac{ - 1}{2}
  •  \frac{1}{2} (3 + cos2x - 2cos2x \times  \frac{1}{2}
  •  \frac{1}{2} (3 + cos2x - cos2x)
  • 1/2(3)
  •  \frac{3}{2}

Therefore ,

LHS=RHS.

Hope it helps u mate .

Thank you .

Similar questions