Math, asked by rohithkrhoypuc1, 1 month ago

Brainly moderators please answer this question ☺​

Attachments:

Answers

Answered by mathdude500
19

\large\underline{\sf{Solution-}}

Given matrix is

\rm :\longmapsto\:A = \begin{gathered}\sf \left[\begin{array}{ccc}6& - 2&2\\ - 2&3& - 1\\ 2& - 1&3\end{array}\right]\end{gathered}

We know,

\rm :\longmapsto\:A = \dfrac{1}{2}(2A)

\rm :\longmapsto\:A = \dfrac{1}{2}(A + A)

\rm :\longmapsto\:A = \dfrac{1}{2}(A + A + A' - A')

\rm :\longmapsto\:A = \dfrac{1}{2}\bigg((A + A') + (A - A')\bigg)

\rm :\longmapsto\:A = \dfrac{1}{2}(A + A') +  \dfrac{1}{2}(A - A')

\rm :\longmapsto\:A = P + Q

where,

\rm :\longmapsto\:P = \dfrac{1}{2}(A + A')

and

\rm :\longmapsto\:Q = \dfrac{1}{2}(A  -  A')

Now,

Consider,

\rm :\longmapsto\:P

\rm \:  =  \: \dfrac{1}{2}(A + A')

\rm \:  =  \: \dfrac{1}{2}\bigg( \begin{gathered}\sf \left[\begin{array}{ccc}6& - 2&2\\ - 2&3& - 1\\ 2& - 1&3\end{array}\right]\end{gathered} + \begin{gathered}\sf \left[\begin{array}{ccc}6& - 2&2\\ - 2&3& - 1\\ 2& - 1&3\end{array}\right]\end{gathered}\bigg)

\rm \:  =  \: \dfrac{1}{2}\begin{gathered}\sf \left[\begin{array}{ccc}12& - 4&4\\ - 4&6& - 2\\ 4& - 2&6\end{array}\right]\end{gathered}

\rm \:  =  \: \begin{gathered}\sf \left[\begin{array}{ccc}6& - 2&2\\ - 2&3& - 1\\ 2& - 1&3\end{array}\right]\end{gathered}

\bf\implies \:P = \begin{gathered}\sf \left[\begin{array}{ccc}6& - 2&2\\ - 2&3& - 1\\ 2& - 1&3\end{array}\right]\end{gathered}

Consider,

\rm :\longmapsto\: {P}^{'} = \begin{gathered}\sf \left[\begin{array}{ccc}6& - 2&2\\ - 2&3& - 1\\ 2& - 1&3\end{array}\right]\end{gathered} = P

Hence, P is symmetric.

Consider,

\rm :\longmapsto\:Q

\rm \:  =  \: \dfrac{1}{2}(A  -  A')

\rm \:  =  \: \dfrac{1}{2}\bigg( \begin{gathered}\sf \left[\begin{array}{ccc}6& - 2&2\\ - 2&3& - 1\\ 2& - 1&3\end{array}\right]\end{gathered}  -  \begin{gathered}\sf \left[\begin{array}{ccc}6& - 2&2\\ - 2&3& - 1\\ 2& - 1&3\end{array}\right]\end{gathered}\bigg)

\rm \:  =  \: \begin{gathered}\sf \left[\begin{array}{ccc}0&0&0\\0& 0&0\\ 0&0&0\end{array}\right]\end{gathered}

Consider,

\rm :\longmapsto\: {Q}^{'} = \begin{gathered}\sf \left[\begin{array}{ccc}0&0&0\\0& 0&0\\ 0&0&0\end{array}\right]\end{gathered} =  -  - Q

\bf\implies \:Q \: is \: skew \: symmetric

Hence,

\rm :\longmapsto\:A = \begin{gathered}\sf \left[\begin{array}{ccc}6& - 2&2\\ - 2&3& - 1\\ 2& - 1&3\end{array}\right]\end{gathered}

\begin{gathered}\sf \left[\begin{array}{ccc}6& - 2&2\\ - 2&3& - 1\\ 2& - 1&3\end{array}\right]\end{gathered} + \begin{gathered}\sf \left[\begin{array}{ccc}0&0&0\\0& 0&0\\ 0&0&0\end{array}\right]\end{gathered}

Answered by sharmaraja44079
0

Step-by-step explanation:

a severe hereditary form of anemia in which a mutated form of hemoglobin distorts the red blood cells into a crescent shape at low oxygen levels. It is most common among those of African descent.

Similar questions