Math, asked by guptaananya2005, 1 month ago

Brainly mods, stars, best users.

Differentiate the following function with respect to x

 \sqrt{ \frac{1 - cosmx}{1 + cosmx} }

Quality answer needed as always expected

Answers

Answered by mathdude500
7

\large\underline{\sf{Solution-}}

Given function is

\rm :\longmapsto\: \sqrt{\dfrac{1 - cosmx}{1 + cosmx} }

Let assume that

\rm :\longmapsto\: y = \sqrt{\dfrac{1 - cosmx}{1 + cosmx} }

We know,

\boxed{ \tt{ \: 1 - cos2x =  {2sin}^{2}x \: }}

and

\boxed{ \tt{ \: 1 + cos2x =  {2cos}^{2}x \: }}

So, using these, we get

\rm :\longmapsto\:y =  \sqrt{\dfrac{ {2sin}^{2}mx}{ {2cos}^{2}mx }}

\rm :\longmapsto\:y =  \sqrt{\dfrac{ {sin}^{2}mx}{ {cos}^{2}mx }}

\rm :\longmapsto\:y =  \sqrt{ {tan}^{2} mx}

\rm :\longmapsto\:y = tan \: mx

On differentiating both sides w. r. t. x, we get

\rm :\longmapsto\:\dfrac{d}{dx}y = \dfrac{d}{dx}tan \: mx

We know,

\boxed{ \tt{ \: \dfrac{d}{dx}tanx =  {sec}^{2}x \: }}

So, using this we get

\rm :\longmapsto\:\dfrac{dy}{dx} =  {sec}^{2}mx \: \dfrac{d}{dx}mx

\rm :\longmapsto\:\dfrac{dy}{dx} =  {sec}^{2}mx \:  \times m\dfrac{d}{dx}x

We know,

\boxed{ \tt{ \: \dfrac{d}{dx}x = 1 \:  \: }}

So, using this, we get

\rm :\longmapsto\:\dfrac{dy}{dx} = m \:  {sec}^{2}mx \:  \times 1

\bf\implies \:\boxed{ \tt{ \: \dfrac{dy}{dx} = m \:  {sec}^{2}mx \:  \: }}

More to know :-

\begin{gathered}\boxed{\begin{array}{c|c} \bf f(x) & \bf \dfrac{d}{dx}f(x) \\ \\  \frac{\qquad \qquad}{} & \frac{\qquad \qquad}{} \\ \sf k & \sf 0 \\ \\ \sf sinx & \sf cosx \\ \\ \sf cosx & \sf  -  \: sinx \\ \\ \sf tanx & \sf  {sec}^{2}x \\ \\ \sf cotx & \sf  -  {cosec}^{2}x \\ \\ \sf secx & \sf secx \: tanx\\ \\ \sf cosecx & \sf  -  \: cosecx \: cotx\\ \\ \sf  \sqrt{x}  & \sf  \dfrac{1}{2 \sqrt{x} } \\ \\ \sf logx & \sf \dfrac{1}{x}\\ \\ \sf  {e}^{x}  & \sf  {e}^{x}  \end{array}} \\ \end{gathered}

Answered by XxitsmrseenuxX
1

Answer:

\large\underline{\sf{Solution-}}

Given function is

\rm :\longmapsto\: \sqrt{\dfrac{1 - cosmx}{1 + cosmx} }

Let assume that

\rm :\longmapsto\: y = \sqrt{\dfrac{1 - cosmx}{1 + cosmx} }

We know,

\boxed{ \tt{ \: 1 - cos2x =  {2sin}^{2}x \: }}

and

\boxed{ \tt{ \: 1 + cos2x =  {2cos}^{2}x \: }}

So, using these, we get

\rm :\longmapsto\:y =  \sqrt{\dfrac{ {2sin}^{2}mx}{ {2cos}^{2}mx }}

\rm :\longmapsto\:y =  \sqrt{\dfrac{ {sin}^{2}mx}{ {cos}^{2}mx }}

\rm :\longmapsto\:y =  \sqrt{ {tan}^{2} mx}

\rm :\longmapsto\:y = tan \: mx

On differentiating both sides w. r. t. x, we get

\rm :\longmapsto\:\dfrac{d}{dx}y = \dfrac{d}{dx}tan \: mx

We know,

\boxed{ \tt{ \: \dfrac{d}{dx}tanx =  {sec}^{2}x \: }}

So, using this we get

\rm :\longmapsto\:\dfrac{dy}{dx} =  {sec}^{2}mx \: \dfrac{d}{dx}mx

\rm :\longmapsto\:\dfrac{dy}{dx} =  {sec}^{2}mx \:  \times m\dfrac{d}{dx}x

We know,

\boxed{ \tt{ \: \dfrac{d}{dx}x = 1 \:  \: }}

So, using this, we get

\rm :\longmapsto\:\dfrac{dy}{dx} = m \:  {sec}^{2}mx \:  \times 1

\bf\implies \:\boxed{ \tt{ \: \dfrac{dy}{dx} = m \:  {sec}^{2}mx \:  \: }}

More to know :-

\begin{gathered}\boxed{\begin{array}{c|c} \bf f(x) & \bf \dfrac{d}{dx}f(x) \\ \\  \frac{\qquad \qquad}{} & \frac{\qquad \qquad}{} \\ \sf k & \sf 0 \\ \\ \sf sinx & \sf cosx \\ \\ \sf cosx & \sf  -  \: sinx \\ \\ \sf tanx & \sf  {sec}^{2}x \\ \\ \sf cotx & \sf  -  {cosec}^{2}x \\ \\ \sf secx & \sf secx \: tanx\\ \\ \sf cosecx & \sf  -  \: cosecx \: cotx\\ \\ \sf  \sqrt{x}  & \sf  \dfrac{1}{2 \sqrt{x} } \\ \\ \sf logx & \sf \dfrac{1}{x}\\ \\ \sf  {e}^{x}  & \sf  {e}^{x}  \end{array}} \\ \end{gathered}

Similar questions