Brainly Star here!
Please answer this Question!
if x = and y = then find the value of x³ + y³.
Answers
★ Given -:
★ To find -:
Value of x³ + y³
★ Solution -:
Refer the attachment
★ Steps followed -:
» Rationalise both the terms
» put the values of x and y in the identity ..
Question : -
If x = (1)/(7+4√3) & y = (1)/(7-4√3) then find the value of x³ + y³ ?
ANSWER
Given : -
x = (1)/(7+4√3) & y = (1)/(7-4√3)
Required to find : -
- value of x³ + y³
Formula used : -
- x³ + y³ = (x+y) (x²-xy+y²)
Solution : -
x = (1)/(7+4√3) & y = (1)/(7-4√3)
We need to find the value of x³ + y³ ?
So,
Value of x = (1)/(7+4√3)
Here,
Let's rationalize the denominator .
Rationalising factor of 7+4√3 = 7-4√3
Multiplying the numerator & denominator with the rationalising factor .
(1)/(7+4√3) x (7-4√3)/(7-4√3)
(7-4√3)/([7+4√3] [7-4√3])
(7-4√3)/([7]²-[4√3]²)
(7-4√3)/(49-16 x 3)
(7-4√3)/(49-48)
(7-4√3)/(1)
(7-4√3)
Similarly,
Value of y = (1)/(7-4√3)
Here,
Let's rationalize the denominator.
Rationalising factor of 7-4√3 = 7+4√3
Multiplying the numerator & denominator with the rationalising factor .
(1)/(7-4√3) x (7+4√3)/(7+4√3)
(7+4√3)/([7-4√3] [7+4√3])
(7+4√3)/([7]²-[4√3]²)
(7+4√3)/(49-48)
(7+4√3)/(1)
(7+4√3)
Hence,
- Value of x = 7-4√3
- Value of y = 7+4√3
For the next calculations let's us these values only .
Now,
Let's find the value of x² & y²
This implies;
x² = (7-4√3)²
This is in the form of;
- (x-y)² = x²+y²-2xy
=> (7)²+(4√3)²-2(7)(4√3)
=> 49+16 x 3-48√3
=> 49+48-48√3
=> 97-48√3
Similarly,
y² = (7+4√3)²
=> (7)²+(4√3)²+2(7)(4√3)
=> 49+16 x 3+48√3
=> 49+48+48√3
=> 97+48√3
So,
- Value of x² = 97-48√3
- Value of y² = 97+48√3
Now,
Let's find the value of x³+y³
Using the formula;
- x³ + y³ = (x+y) (x²-xy+y²)
This implies;
(7-4√3+[7+4√3]) ([97-48√3]-[7-4√3][7+4√3]+[97+48√3])
(7-4√3+7+4√3)([97-48√3]-[{7}²-{4√3}²]+[97+58√3])
(7+7)(97-48√3-[49-48]+97+58√3)
(14)(97-48√3-1+97+58√3)
(14)(97+97-1)
(14)(194-1)
(14)(193)
2702
Therefore,
Value of x³+y³ = 2,702