Math, asked by Anonymous, 8 months ago

Brainly Star here!

Please answer this Question!


if x = \sf{\dfrac{1}{ 7 + 4\sqrt{3}}} and y = \sf{\dfrac{1}{ 7 - 4\sqrt{3}}} then find the value of x³ + y³.​

Answers

Answered by EuphoricEpitome
66

Given -:

 x = \dfrac{1}{7+4\sqrt{3}}

 y = \dfrac{1}{7 - 4\sqrt{3}}

To find -:

Value of x³ + y³

Solution -:

Refer the attachment

Steps followed -:

» Rationalise both the terms

» put the values of x and y in the identity ..

Attachments:

Vamprixussa: Keep up the good work !
Answered by MisterIncredible
63

Question : -

If x = (1)/(7+4√3) & y = (1)/(7-4√3) then find the value of x³ + y³ ?

ANSWER

Given : -

x = (1)/(7+4√3) & y = (1)/(7-4√3)

Required to find : -

  • value of x³ + y³

Formula used : -

  • x³ + y³ = (x+y) (x²-xy+y²)

Solution : -

x = (1)/(7+4√3) & y = (1)/(7-4√3)

We need to find the value of x³ + y³ ?

So,

Value of x = (1)/(7+4√3)

Here,

Let's rationalize the denominator .

Rationalising factor of 7+4√3 = 7-4√3

Multiplying the numerator & denominator with the rationalising factor .

(1)/(7+4√3) x (7-4√3)/(7-4√3)

(7-4√3)/([7+4√3] [7-4√3])

(7-4√3)/([7]²-[4√3]²)

(7-4√3)/(49-16 x 3)

(7-4√3)/(49-48)

(7-4√3)/(1)

(7-4√3)

Similarly,

Value of y = (1)/(7-4√3)

Here,

Let's rationalize the denominator.

Rationalising factor of 7-4√3 = 7+4√3

Multiplying the numerator & denominator with the rationalising factor .

(1)/(7-4√3) x (7+4√3)/(7+4√3)

(7+4√3)/([7-4√3] [7+4√3])

(7+4√3)/([7]²-[4√3]²)

(7+4√3)/(49-48)

(7+4√3)/(1)

(7+4√3)

Hence,

  • Value of x = 7-4√3
  • Value of y = 7+4√3

For the next calculations let's us these values only .

Now,

Let's find the value of x² & y²

This implies;

x² = (7-4√3)²

This is in the form of;

  • (x-y)² = x²+y²-2xy

=> (7)²+(43)²-2(7)(43)

=> 49+16 x 3-483

=> 49+48-483

=> 97-483

Similarly,

y² = (7+4√3)²

=> (7)²+(43)²+2(7)(43)

=> 49+16 x 3+483

=> 49+48+483

=> 97+483

So,

  • Value of = 97-483
  • Value of = 97+483

Now,

Let's find the value of x³+y³

Using the formula;

  • x³ + y³ = (x+y) (x²-xy+y²)

This implies;

(7-4√3+[7+4√3]) ([97-48√3]-[7-4√3][7+4√3]+[97+48√3])

(7-4√3+7+4√3)([97-48√3]-[{7}²-{4√3}²]+[97+58√3])

(7+7)(97-48√3-[49-48]+97+58√3)

(14)(97-48√3-1+97+58√3)

(14)(97+97-1)

(14)(194-1)

(14)(193)

2702

Therefore,

Value of + = 2,702


MisterIncredible: Thanks for the Brainliest ^_^
Vamprixussa: Great answer !
MisterIncredible: Thankies vampire ^_^
Similar questions