Math, asked by Truebrainlian9899, 1 month ago

BRAINLY STAR
MODETORS
Q)
 \large \sf \angle \: b = 105 \degree
angle A = 25°

BD || CE

Find the value of x in the above picture.

Spam answer will be reported. ​

Attachments:

Answers

Answered by ItzBrainlyLords
4

☞︎︎︎ Construction :

Since,

  • Given :

DB || EC

So,

Draw CF (such as DB || EF )

Finding y :

Here,

105° + ∠y = 180° (allied angles)

⇒ ∠y = 180° - 105°

y = 75°

_____________________________________________

We know :

Angle Along straight line = 180°

 \\  \large \sf  : \implies \angle \: y + \angle \: z = 180 \degree \\  \\  \large \sf  : \implies 75 \degree+ \angle \: z = 180 \degree \\  \\   \large \sf  : \implies  \angle \: z = 180 \degree  - 75 \degree\\  \\   \large \sf   \therefore \:  \angle \: z = 105\degree \\  \\

Now ,

In triangle AFC :

  • Angle sum Property

 \\  \large \sf \rightarrow \:  \angle \: z +  \angle \: a +  \angle \: t = 180 \degree \\  \\  \large \sf  : \implies\: 105 \degree +  25 \degree + \angle \: t = 180 \degree \\  \\   \large \sf  : \implies\: 130 \degree +  \angle \: t = 180 \degree \\  \\   \large \sf  : \implies\: \angle \: t = 180 \degree - 130 \degree \\  \\   \large \sf  \therefore \:  \underline{ \underline{ \angle \: t = 50 \degree}} \\  \\

_____________________________________________

Angels along straight line = 180°

 \large \sf \implies \angle \: t +  \angle \: x = 180 \degree \\  \\ \large \sf \implies 50 \degree +  \angle \: x = 180 \degree \\  \\\large \sf \implies  \angle \: x = 180 \degree  - 50 \degree\\  \\  \large{ \underline{\boxed{ \sf \angle \: x = 130 \degree}}} \\

Attachments:
Similar questions