Math, asked by Racerr, 1 month ago

Brainly stars and moderators. A question for you all:.

sin 5x-sin 3x / cos 5x+cos 3x =tan 4x
Class 11
Don't spam ⚠️
best answer =brainliest​

Answers

Answered by sethrollins13
228

Correct Question :

sin 5x + sin 3x / cos 5x + cos 3x = tan 4x

Given :

  • sin 5x + sin 3x / cos 5x + cos 3x

To Prove :

  • sin 5x + sin 3x / cos 5x + cos 3x =tan 4x

Solution :

Using Identities :

  • sin x + sin y = 2sin x+y/2 cos x-y/2
  • cos x + cos y = 2cos x+y/2 cos x-y/2

\longmapsto\tt{\dfrac{2sin\:\dfrac{5x+3x}{2}\:cos\:\dfrac{5x-3x}{2}}{2cos\:\dfrac{5x+3x}{2}\:cos\:\dfrac{5x-3x}{2}}}

\longmapsto\tt{\dfrac{2sin\:\dfrac{{\not{8x}}}{{\not{2}}}\:cos\:\dfrac{{\not{2}}x}{{\not{2}}}}{2cos\:\dfrac{{\not{8x}}}{2}\:cos\:\dfrac{{\not{2}}}{{\not{2}}}}}

\longmapsto\tt{\dfrac{{\not{2}}\:sin\:4x\:{\cancel{cos\:x}}}{{\not{2}}\:cos\:4x\:{\cancel{cos\:x}}}}

\longmapsto\tt\bf{tan\:4x}

HENCE PROVED!

____________________

Some more Trigonometric Identities :

  • cos x + cos y = 2 cos x+y/2 cos x-y/2
  • sin x + sin y = 2 sin x+y/2 cos x-y/2
  • sin (-x) = -sin x
  • cos (-x) = cos x
  • cos (x-y) = cos x cos y + sin x sin y
  • sin (x-y) = sin x cos y - cos x sin y

____________________

Answered by MяMαgıcıαη
270

Correct Question

\:

  • Prove that : \sf \dfrac{sin\:5x + sin\:3x}{cos\:5x + cos\:3x} = tan\:4x

\:

Given

\:

  • \sf \dfrac{sin\:5x + sin\:3x}{cos\:5x + cos\:3x}

\:

To Prove

\:

  • \sf \dfrac{sin\:5x + sin\:3x}{cos\:5x + cos\:3x} = tan\:4x

\:

Proof

\:

\clubsuit Identities Used :

\:

\footnotesize\bigstar\:{\pmb{\underline{\boxed{\bf{\red{sin\:A + sin\:B = 2sin\Bigg\{\dfrac{A + B}{2}\Bigg\}cos\:\Bigg\{\dfrac{A - B}{2}\Bigg\}}}}}}}

\:

\footnotesize\bigstar\:{\pmb{\underline{\boxed{\bf{\purple{cos\:A + cos\:B = 2cos\Bigg\{\dfrac{A + B}{2}\Bigg\}cos\:\Bigg\{\dfrac{A - B}{2}\Bigg\}}}}}}}

\:

⠀⠀⠀━━━━━━━━━━━━━━━━━━━━━━

\\ \qquad\quad\:\:\:\::\implies\:\pmb{\sf{L.H.S}}

\\ \qquad\quad :\implies\:\sf \dfrac{sin\:5x + sin\:3x}{cos\:5x + cos\:3x}

\\ :\implies\:\sf \dfrac{2sin\Bigg\{\dfrac{5x + 3x}{2}\Bigg\}cos\:\Bigg\{\dfrac{5x - 3x}{2}\Bigg\}}{2cos\Bigg\{\dfrac{5x + 3x}{2}\Bigg\}cos\:\Bigg\{\dfrac{5x - 3x}{2}\Bigg\}}

\\ :\implies\:\sf \dfrac{2sin\Bigg\{\dfrac{\not{8x}}{\not{2}}\Bigg\}cos\:\Bigg\{\dfrac{\not{2x}}{\not{2}}\Bigg\}}{2cos\Bigg\{\dfrac{\not{8x}}{\not{2}}\Bigg\}cos\:\Bigg\{\dfrac{\not{2x}}{\not{2}}\Bigg\}}

\\ \qquad\quad:\implies\:\sf \dfrac{\cancel{2}sin\:4x\:\cancel{cos\:x}}{\cancel{2}cos\:4x\:\cancel{cos\:x}}

\\ \qquad\quad\:\:\:\::\implies\:\sf \dfrac{sin\:4x}{cos\:4x}

\\ :\implies\:\pmb{\blue{\underline{\boxed{\bf{\pink{tan\:4x}}}}}}\qquad\Bigg\lgroup \because\:{\pmb {\frak {\green {\dfrac{sin\:\rm{A}}{cos\:\rm{A}} = tan\:\rm{A}}}}}\Bigg\rgroup

\\ \qquad\quad\:\:\:\::\implies\:\pmb{\sf{R.H.S}}

\:

\qquad\quad\:\:\:\therefore\:\pmb{\underline{\textsf{\textbf{Hence,\:Proved!}}}}

\:

⠀⠀⠀━━━━━━━━━━━━━━━━━━━━━━

\:

\clubsuit Know More :

\:

\pmb{\underline{\bm{\bigstar\:Trigonomentary\:Formulas\::}}}

\:

  • sin (–A) = –sin A

  • tan (–A) = –tan A

  • cot (–A) = –cot A

  • cosec (–A) = –cosec A

  • cos (–A) = cos A

  • sec (–A) = sec A

\:

━━━━━━━━━━━━━━━━━━━━━━━━

Similar questions