Math, asked by fumakiya2312, 1 month ago

Brainly stars and moderators. A question for you all:.

sin x-sin 3x / cos x+cos 3x =tan 2x
Class 11
Don't spam ⚠️
best answer =brainliest​​

Answers

Answered by tennetiraj86
11

Step-by-step explanation:

Given :-

(Sinx-Sin 3x) / (Cos x+Cos 3x)

Correction :-

(Sinx+Sin 3x) / (Cos x+Cos 3x)

To find :-

Prove that (Sinx+Sin 3x) / (Cos x+Cos 3x) = Tan 2x.

Solution :-

On taking LHS

Given that (Sinx+Sin 3x) / (Cos x+Cos 3x)

Numerator = Sin x+ Sin 3x

This is in the form of Sin C+ Sin D

We know that

SinC + SinD = 2Sin[(C+D)/2]Cos[(C-D)/2]

=> Sin x+ Sin 3x

=> 2 Sin (x+3x)/2 Cos (x-3x)/2

=> 2 Sin (4x/2) Cos (-2x/2)

=> 2 Sin 2x Cos (-x) -----------(1)

and

The denominator = Cos x + Cos 3x

This is in the form of Cos C + Cos D

We know that

CosC + CosD=2Cos[(C+D)/2]Cos[(C-D)/2]

=> Cos x + Cos 3x

=> 2 Cos (x+3x)/2 Cos (x-3x)/2

=> 2 Cos (4x/2) Cos (-2x/2)

=> 2 Cos 2x Cos (-x) ----------(2)

Now

(Sinx+Sin 3x) / (Cos x+Cos 3x)

=> (2 Sin 2x Cos (-x))/(2 Cos 2x Cos (-x))

On cancelling 2 Cos (-x) in both numerator and the denominator

=> Sin 2x / Cos 2x

=> Tan 2x

LHS = RHS

Hence, Proved

Answer:-

(Sinx+Sin 3x) / (Cos x+Cos 3x) = Tan 2x.

Used formulae:-

SinC + SinD = 2Sin[(C+D)/2]Cos[(C-D)/2]

CosC + CosD=2Cos[(C+D)/2]Cos[(C-D)/2]

Tan X = Sin X/ Cos X

Answered by Ristar
5

Answer:

LHS=

cosx+cos3x

sinx+sin3x

=

2cos(

2

x+3x

)cos(

2

x−3x

)

−2sin(

2

x+3x

)cos(

2

x−3x

)

=tan2x=RHS

Hence, proved

Similar questions