Math, asked by fumakiya2312, 1 month ago

Brainly stars and super moderator. A question for you all:.

sin x-sin 3x / cos x+cos 3x =tan 2x
Class 11
Don't spam ⚠️
best answer =brainliest​​

Answers

Answered by SparklingBoy
125

\large \bf \clubs \:  Appropriate \:  Question  :-

Prove That,

 \dfrac{ \sin\text x +  \sin3\text x}{ \cos\text x +  \cos3\text x} =  \tan2 \text x

----------------------

\large \bf \clubs \:  Basic \:  Formulas :-

 \maltese \:  \:  \text {sin3x = 3sinx} -  \text{4 {sin}}^{3} \text x \\  \\  \maltese \:  \:  \text{cos3x =  4{cos}}^{3} \text x -  \text{3cosx} \\  \\  \maltese \:  \:   \text{1 -  {sin}}^{2} \text{x =  {cos}}^{2} \text x \\  \\  \maltese \:  \:  \text{2 {cos}}^{2} \text x - 1 =  \text{cos2x} \\  \\   \maltese \:  \:   \frac{ \sin\text x}{ \cos\text x}  =  \tan\text x\\\\   \maltese \:  \:  2\sin \text x \cos\text {x = sin2x}

----------------------

\large \bf \clubs \:  Proof :-

 \large \pmb{LHS : }

\dfrac{ \sin\text x +  \sin3\text x}{ \cos\text x +  \cos3\text x}\\

 = \dfrac{ \sin\text x +  3\sin\text x - 4 \sin {}^{3} \text x}{ \cos\text x   + 4 { \cos}^{3}\text x - 3  \cos\text x}\\

 = \dfrac{4 \sin\text x  - 4 \sin {}^{3} \text x}{ 4\cos {}^{3} \text x  -   2\cos\text x}\\

 = \dfrac{ 4\sin\text x \:  (1 -  \sin {}^{2} \text x)}{ 2\cos\text x  \: ( 2\cos {}^{2} \text x - 1)}\\

 =  \dfrac{ 2\sin\text x }{  \cancel{\cos\text x}} \times \dfrac{ \sin\text x  \: { \cos}^{ \cancel2}\text x }{ \cos2\text x}\\

 = \dfrac{2 \sin\text x \cos \text x}{ \cos2\text x }\\

 =  \dfrac{ \sin2\text x}{ \cos2\text x}\\

 =  \bf tan2x\\

 \large =\pmb{LHS}

 \Large\underline{\pink{\bigstar\:\:\underline{\frak{\pmb{\text Hence\:\:Proved }}}}}

----------------------

Answered by Atlas99
31

☀︎︎ANSWER☀︎︎

TO PROVE:-

 \frac{sin \: x + sin \: 3x}{cos \: x + cos3x}  = tan \: 2x

It is known that,

sin \: a \:  +  sin \: b \:  = 2 \: sin \: ( \frac{ a + b}{2} )cos(  \frac{a - b}{2} )

cos \: a \:  + cos \: b  = 2cos( \frac{a + b}{2} )cos( \frac{a - b}{2} )

Therefore, LHS =

 \frac{sin \: x + sin \: 3x}{cos \: x + cos \: 3x}

 =  \frac{2sin( \frac{x + 3x}{2})cos( \frac{x - 3x}{2} ) }{2 \: cos( \frac{x + 3x}{2})cos( \frac{x - 3x}{2} )  }

 =  \frac{sin \: 2x}{cos \: 2x}

 = tan \: 2x

= R.H.S

_______________________

♥︎THANKS!!

Similar questions