Math, asked by Anonymous, 5 hours ago

Brainly stars here!

Question:-

a + b + c = 4

 {a}^{2}  +  {b}^{2}  +  {c}^{2}  = 10

 {a}^{3}  +  {b}^{3} +  {c}^{3}  = 22

 {a}^{4}  +  {b}^{4}  +  {c}^{4}  = \:  ?

_____________________
please don't spam answers!​

Answers

Answered by mathdude500
7

\large\underline{\sf{Solution-}}

Given that

\rm :\longmapsto\:a + b + c = 4

\rm :\longmapsto\: {a}^{2}  +  {b}^{2}  +  {c}^{2}  = 10

\rm :\longmapsto\: {a}^{3}  +  {b}^{3}  +  {c}^{3}  = 22

Now, Consider

\rm :\longmapsto\:a + b + c = 4

On squaring both sides, we get

\rm :\longmapsto\: {(a + b + c)}^{2} =  {4}^{2}

\rm :\longmapsto\: {a}^{2} +  {b}^{2} +  {c}^{2} + 2(ab + bc + ca) = 16

\rm :\longmapsto\: 10 + 2(ab + bc + ca) = 16

\rm :\longmapsto\:  2(ab + bc + ca) = 16 - 10

\rm :\longmapsto\:  2(ab + bc + ca) = 6

\rm \implies\:\boxed{\tt{ ab + bc + ca = 3}} -  -  - (1)

Now, Consider

\rm :\longmapsto\:(a + b + c)( {a}^{2} +  {b}^{2} +  {c}^{2}) = 4 \times 10

\rm :\longmapsto\: {a}^{3} +  {ab}^{2} +  {ac}^{2} +{ba}^{2} +{b}^{3} +  {bc}^{2} +  {ca}^{2} +  {cb}^{2} +  {c}^{3} = 40

\rm :\longmapsto\: {a}^{3}+ {b}^{3} +  {c}^{3} + {ab}^{2}+{ac}^{2} +{ba}^{2} +  {bc}^{2} +{ca}^{2} +{cb}^{2}=40

\rm :\longmapsto\: 22+ {ab}^{2}+{ac}^{2} +{ba}^{2} +  {bc}^{2} +{ca}^{2} +{cb}^{2}=40

 \red{ \bigg\{  \sf \: \because \: of \: given \bigg\}}

\rm :\longmapsto\:{ab}^{2}+{ac}^{2} +{ba}^{2} +  {bc}^{2} +{ca}^{2} +{cb}^{2}=40 - 22

\rm :\longmapsto\:\boxed{\tt{ {ab}^{2}+{ac}^{2} +{ba}^{2} +  {bc}^{2} +{ca}^{2} +{cb}^{2}=18}} -  -  - (2)

Consider

\rm :\longmapsto\:(a + b + c)(ab + bc + ca) = 4 \times 3

\rm :\longmapsto\: {ba}^{2} +abc +  {ca}^{2}  +  {ab}^{2} +  {bc}^{2}  + abc + abc +  {bc}^{2} +  {ac}^{2} = 12

\rm :\longmapsto\: 3abc + {ba}^{2} +  {ca}^{2}+{ab}^{2}  + {bc}^{2}+  {bc}^{2} +  {ac}^{2} = 12

\rm :\longmapsto\: 3abc + 18 = 12

 \red{ \bigg\{  \sf \: \because \: using \: equation \: (2) \bigg\}}

\rm :\longmapsto\: 3abc = 12 - 18

\rm :\longmapsto\: 3abc =  - 6

\rm \implies\:\boxed{\tt{ abc =  - 2}} -  -  - (3)

Now, Consider

\rm :\longmapsto\:(ab + bc + ca)^{2} =  {3}^{2}

\rm :\longmapsto\: {a}^{2}{b}^{2} +  {b}^{2}{c}^{2} + {c}^{2} {a}^{2} + 2( {b}^{2}ac +  {2c}^{2}ab +  {2bca}^{2}) = 9

\rm :\longmapsto\: {a}^{2}{b}^{2} +  {b}^{2}{c}^{2} + {c}^{2} {a}^{2} + 2abc(a + b + c)= 9

\rm :\longmapsto\: {a}^{2}{b}^{2} +  {b}^{2}{c}^{2} + {c}^{2} {a}^{2} + 2( - 2)(4)= 9

 \red{ \bigg\{  \sf \: \because \: using \: equation \: (3) \: and \: given \bigg\}}

\rm :\longmapsto\: {a}^{2}{b}^{2} +  {b}^{2}{c}^{2} + {c}^{2} {a}^{2}  - 16= 9

\rm :\longmapsto\: {a}^{2}{b}^{2} +  {b}^{2}{c}^{2} + {c}^{2} {a}^{2} = 9 + 16

\rm :\longmapsto\: \boxed{\tt{ {a}^{2}{b}^{2} +  {b}^{2}{c}^{2} + {c}^{2} {a}^{2} = 25 \: }} -  -  - (4)

Now, given that

\rm :\longmapsto\: {a}^{2} +  {b}^{2}  +  {c}^{2}  = 10

On squaring both sides, we get

\rm :\longmapsto\: {a}^{4} +{b}^{4} +  {c}^{4} + 2( {a}^{2} {b}^{2} +  {b}^{2} {c}^{2} +  {c}^{2} {a}^{2}) = 100

\rm :\longmapsto\: {a}^{4} +{b}^{4} +  {c}^{4} + 2( 25) = 100

 \red{ \bigg\{  \sf \: \because \: using \: equation \: (4) \bigg\}}

\rm :\longmapsto\: {a}^{4} +{b}^{4} +  {c}^{4} + 50 = 100

\rm :\longmapsto\: {a}^{4} +{b}^{4} +  {c}^{4} = 100 - 50

\rm \implies\:\boxed{\tt{ \: {a}^{4} +{b}^{4} +  {c}^{4} = 50 \: }}

Answered by OoAryanKingoO78
4

Answer:

\large\underline{\sf{Solution-}}

Given that

\rm :\longmapsto\:a + b + c = 4

\rm :\longmapsto\: {a}^{2}  +  {b}^{2}  +  {c}^{2}  = 10

\rm :\longmapsto\: {a}^{3}  +  {b}^{3}  +  {c}^{3}  = 22

Now, Consider

\rm :\longmapsto\:a + b + c = 4

On squaring both sides, we get

\rm :\longmapsto\: {(a + b + c)}^{2} =  {4}^{2}

\rm :\longmapsto\: {a}^{2} +  {b}^{2} +  {c}^{2} + 2(ab + bc + ca) = 16

\rm :\longmapsto\: 10 + 2(ab + bc + ca) = 16

\rm :\longmapsto\:  2(ab + bc + ca) = 16 - 10

\rm :\longmapsto\:  2(ab + bc + ca) = 6

\rm \implies\:\boxed{\tt{ ab + bc + ca = 3}} -  -  - (1)

Now, Consider

\rm :\longmapsto\:(a + b + c)( {a}^{2} +  {b}^{2} +  {c}^{2}) = 4 \times 10

\rm :\longmapsto\: {a}^{3} +  {ab}^{2} +  {ac}^{2} +{ba}^{2} +{b}^{3} +  {bc}^{2} +  {ca}^{2} +  {cb}^{2} +  {c}^{3} = 40

\rm :\longmapsto\: {a}^{3}+ {b}^{3} +  {c}^{3} + {ab}^{2}+{ac}^{2} +{ba}^{2} +  {bc}^{2} +{ca}^{2} +{cb}^{2}=40

\rm :\longmapsto\: 22+ {ab}^{2}+{ac}^{2} +{ba}^{2} +  {bc}^{2} +{ca}^{2} +{cb}^{2}=40

 \red{ \bigg\{  \sf \: \because \: of \: given \bigg\}}

\rm :\longmapsto\:{ab}^{2}+{ac}^{2} +{ba}^{2} +  {bc}^{2} +{ca}^{2} +{cb}^{2}=40 - 22

\rm :\longmapsto\:\boxed{\tt{ {ab}^{2}+{ac}^{2} +{ba}^{2} +  {bc}^{2} +{ca}^{2} +{cb}^{2}=18}} -  -  - (2)

Consider

\rm :\longmapsto\:(a + b + c)(ab + bc + ca) = 4 \times 3

\rm :\longmapsto\: {ba}^{2} +abc +  {ca}^{2}  +  {ab}^{2} +  {bc}^{2}  + abc + abc +  {bc}^{2} +  {ac}^{2} = 12

\rm :\longmapsto\: 3abc + {ba}^{2} +  {ca}^{2}+{ab}^{2}  + {bc}^{2}+  {bc}^{2} +  {ac}^{2} = 12

\rm :\longmapsto\: 3abc + 18 = 12

 \red{ \bigg\{  \sf \: \because \: using \: equation \: (2) \bigg\}}

\rm :\longmapsto\: 3abc = 12 - 18

\rm :\longmapsto\: 3abc =  - 6

\rm \implies\:\boxed{\tt{ abc =  - 2}} -  -  - (3)

Now, Consider

\rm :\longmapsto\:(ab + bc + ca)^{2} =  {3}^{2}

\rm :\longmapsto\: {a}^{2}{b}^{2} +  {b}^{2}{c}^{2} + {c}^{2} {a}^{2} + 2( {b}^{2}ac +  {2c}^{2}ab +  {2bca}^{2}) = 9

\rm :\longmapsto\: {a}^{2}{b}^{2} +  {b}^{2}{c}^{2} + {c}^{2} {a}^{2} + 2abc(a + b + c)= 9

\rm :\longmapsto\: {a}^{2}{b}^{2} +  {b}^{2}{c}^{2} + {c}^{2} {a}^{2} + 2( - 2)(4)= 9

 \red{ \bigg\{  \sf \: \because \: using \: equation \: (3) \: and \: given \bigg\}}

\rm :\longmapsto\: {a}^{2}{b}^{2} +  {b}^{2}{c}^{2} + {c}^{2} {a}^{2}  - 16= 9

\rm :\longmapsto\: {a}^{2}{b}^{2} +  {b}^{2}{c}^{2} + {c}^{2} {a}^{2} = 9 + 16

\rm :\longmapsto\: \boxed{\tt{ {a}^{2}{b}^{2} +  {b}^{2}{c}^{2} + {c}^{2} {a}^{2} = 25 \: }} -  -  - (4)

Now, given that

\rm :\longmapsto\: {a}^{2} +  {b}^{2}  +  {c}^{2}  = 10

On squaring both sides, we get

\rm :\longmapsto\: {a}^{4} +{b}^{4} +  {c}^{4} + 2( {a}^{2} {b}^{2} +  {b}^{2} {c}^{2} +  {c}^{2} {a}^{2}) = 100

\rm :\longmapsto\: {a}^{4} +{b}^{4} +  {c}^{4} + 2( 25) = 100

 \red{ \bigg\{  \sf \: \because \: using \: equation \: (4) \bigg\}}

\rm :\longmapsto\: {a}^{4} +{b}^{4} +  {c}^{4} + 50 = 100

\rm :\longmapsto\: {a}^{4} +{b}^{4} +  {c}^{4} = 100 - 50

\rm \implies\:\boxed{\tt{ \: {a}^{4} +{b}^{4} +  {c}^{4} = 50 \: }}

Similar questions