Math, asked by duragpalsingh, 5 months ago

#BrainTeaser02

Find the possible values of n.
(n^2)^n - 2n^n+ 1 = 0 ~~~~~~~(n \neq 0,1)

Answers

Answered by saanvigrover2007
5

 \sf{(n^2)^n - 2n^n+ 1 = 0 ~~~~~~~(n \neq 0,1)}

  \sf{\fbox{let \: n = 2}}

 \sf{(2^2)^2 - 2(2)^2+ 1 = 0} \\  \sf{ {2}^{4}  - 2(4) + 1 = 0} \\  \sf{16 - 8 + 1 = 0} \\  \sf \purple{9 \neq0} \\  \sf \red{hence, \: n \neq2}

 \tt{after \: taking \: a \: few \: values,}

  \sf \pink{let \: n  \neq  0,1,2, - 2, - 3, - 4, 4}

Answered by BrainlyKingdom
5

Required Answer

\textsf{We have $\sf{4\left(n^{2}\right)^{n}-2 n^{n}+1=0}$ and n $\neq$ 0, 1}

\to\textsf{We can write $\sf{(n^2)^n}$ as $\sf{(n^n)^2}$}

\to\textsf{So, $\sf{\left(n^{n}\right)^{2}-2 n^{n}+1=0}$}

\bigstar \bf{Let\:n^n=x}

\implies\sf{x^{2}-2 x+1=0}

\implies\sf{(x-1)^2=0}

\implies\sf{x=1}

  • \sf{So,\:n^n=1}

\textbf{Taking log on both sides}

\implies\sf{n \log (n)=\log 1}

\implies\sf{\log (n)=\frac{0}{n}}

\implies\sf{\log (n)\neq 0\quad   (since, n\neq 0 )}

\implies\sf{\log (n)=\log (1)}

\implies\sf{n=1}

\textsf{But from the question n $\neq$ 1}

\textbf{We can not find value of "n" other than 1.}

Similar questions