Brave that the vectay 7 = 4↑ +37 +R
and B = 12 7+ ai +3k are parallel
each other a
Answers
Given :-
◉ Vector A = 4i + 3j + k
◉ Vector B = 12i + 9j + 3k
To Prove :-
◉ Vector A is parallel to Vector B
Solution :-
Let us find the magnitude of each of the two vectors.
⇒ |A| = √[ (Ax)² + (Ay)² + (Az)² ]
Where,
- Ax = X component of A
- Ay = Y component of A
- Az = Z component of A
⇒ |A| = √(4² + 3² + 1²)
⇒ |A| = √(16 + 9 + 1)
⇒ |A| = √26 ...(1)
Similarly,
⇒ |B| = √[ (Bx)² + (By)² + (Bz)² ]
Where,
- Bx = X component of B
- By = Y component of B
- Bz = Z component of B
⇒ |B| = √(12² + 9² + 3²)
⇒ |B| = √(144 + 81 + 9)
⇒ |B| = √234
⇒ |B| = 3√26 ...(2)
Adding (1) & (2),
⇒ |A| + |B| = √26 + 4√26 [ from (1) & (2) ]
⇒ |A| + |B| = 4√26
Now, Let us find the resultant of A & B,
⇒ A + B = (4 + 12)i + (3 + 9)j + (1+3)k
⇒ R = 16i + 12j + 4k [ A + B = R ]
So,
⇒ |R| = √[ (Rx)² + (Ry)² + (Rz)² ]
Where,
- Rx = X component of R
- Ry = Y component of R
- Rz = Z component of R
⇒ |R| = √(16² + 12² + 4²)
⇒ |R| = √(256 + 144 + 16)
⇒ |R| = √416
⇒ |R| = 4√26
We observe that |R| = |A| + |B|
It is only possible when the vectors are parallel to each other. In this case, The Magnitude of the two vectors gets added directly.
Hence, Proved.