Briefly describe the illustrations by citing scientific explanation
based on the wave particle duality theory.
Answers
Explanation:
Wave–particle duality is the concept in quantum mechanics that every particle or quantum entity may be described as either a particle or a wave. It expresses the inability of the classical concepts "particle" or "wave" to fully describe the behaviour of quantum-scale objects. As Albert Einstein wrote:[1]
It seems as though we must use sometimes the one theory and sometimes the other, while at times we may use either. We are faced with a new kind of difficulty. We have two contradictory pictures of reality; separately neither of them fully explains the phenomena of light, but together they do.
Through the work of Max Planck, Albert Einstein, Louis de Broglie, Arthur Compton, Niels Bohr, and many others, current scientific theory holds that all particles exhibit a wave nature and vice versa.[2] This phenomenon has been verified not only for elementary particles, but also for compound particles like atoms and even molecules. For macroscopic particles, because of their extremely short wavelengths, wave properties usually cannot be detected.[3]
Although the use of the wave–particle duality has worked well in physics, the meaning or interpretation has not been satisfactorily resolved; see Interpretations of quantum mechanics.
Bohr regarded the "duality paradox" as a fundamental or metaphysical fact of nature. A given kind of quantum object will exhibit sometimes wave, sometimes particle, character, in respectively different physical settings. He saw such duality as one aspect of the concept of complementarity.[4] Bohr regarded renunciation of the cause-effect relation, or complementarity, of the space-time picture, as essential to the quantum mechanical account.[5]
Werner Heisenberg considered the question further. He saw the duality as present for all quantic entities, but not quite in the usual quantum mechanical account considered by Bohr. He saw it in what is called second quantization, which generates an entirely new concept of fields that exist in ordinary space-time, causality still being visualizable. Classical field values (e.g. the electric and magnetic field strengths of Maxwell) are replaced by an entirely new kind of field value, as considered in quantum field theory. Turning the reasoning around, ordinary quantum mechanics can be deduced as a specialized consequence
Answer:
In quantum physics , It states that any particle or quantum phenomenon can be represented as either a particle or a wave. It expresses the problem of classical terminology like as "particle" and "wave" to absolutely characterise quantum-scale things' behaviour.
Current scientific theory argues that all particles have a wave nature and vice versa, according to the work of Max Planck, Albert Einstein, Louis de Broglie, Arthur Compton, Niels Bohr, and others.
This behaviour has been observed not just in elementary particles but also in composite particles such as atoms and molecules. Wave characteristics for macroscopic particles are frequently not detectable due to their relatively short wavelengths.The "duality dilemma" was seen by Bohr as a basic or philosophical fact of nature. He recognised such duality as one facet of the complementarity concept. The quantum mechanical account, according to Bohr, requires abandonment of the cause-effect relation, or complementarity, of the space-time image.
Werner Heisenberg pondered the issue more deeply. He recognised duality as existing in all quantic entities, but not quite in the way that Bohr considered quantum mechanics. He saw it through what is known as second sight.
#SPJ3
26 MAY 2022.