Math, asked by maahira17, 1 year ago

बताइए कि निम्नलिखित बहुपदों में से किस बहुपद का एक गुणनखंड x + 1 है। (i) x^{3} + x^{2} + x + 1 (ii) x^{4} + x^{3} + x^{2} + x + 1
(iii) x^{4} + 3x^{3} + 3x^{2} + x + 1
(iv) x^{3} - x^{2} - (2 + \sqrt{2})x + \sqrt{2}

Answers

Answered by nikitasingh79
7

Answer:

(x + 1 ) बहुपद x³ + x² + x +1 का एक गुणनखंड है।

Step-by-step explanation:

हल :  

(x + 1 ) का शून्यक  x = (-1) है।

[∵ x + 1  = 0 , x = - 1]

(i) माना p(x) = x³ + x²+ x +1

p(−1) = (−1)³ + (−1)² + (−1) +1

p(−1) = −1 +1 −1+1

p(−1) = 0

अतः शेषफल प्रमेय से (x + 1 ) बहुपद x³ + x² + x +1 का एक गुणनखंड है।

 

(ii)  माना p(x) =  x⁴ + x³ + x² + x + 1

p(-1) = (−1)⁴ + (−1)³ + (−1)² + (−1) +1

p(-1) = 1−1 + 1−1 + 1

p(-1) = 0 + 0 + 1

p(-1) = 1

अतः शेषफल प्रमेय से (x + 1 ) बहुपद x⁴ + x³ + x² + x + 1 का एक गुणनखंड नहीं है।

 

(iii) माना p(x) = x⁴ + 3x³ + 3x² + x + 1 p(−1)= (−1)⁴ + 3(−1)³ + 3(−1)² + (−1) +1

p(−1)‌ = 1− 3 + 3 −1 +1

p(−1) =  1 −1 +1− 3 + 3

p(−1) = 0 + 1 + 0  

p(−1) = 1

अतः शेषफल प्रमेय से (x + 1 ) बहुपद x⁴ + 3x³ + 3x² + x + 1 का एक गुणनखंड नहीं है।

 

(iv) माना, p(x) = x³–x²–(2+√2)x +√2

p(−1) = (−1)³– (−1)²– (2+√2)(−1) +√2

p(−1) = −1– 1 + 2 + √2 + √2

p(−1) = − 2  + 2 + √2 + √2

p(−1) = 0 + 2√2

p(−1) = 2√2

अतः शेषफल प्रमेय से (x + 1 ) बहुपद x³–x²–(2+√2)x +√2 का एक गुणनखंड नहीं है।

आशा है कि यह उत्तर आपकी मदद करेगा।

 

इस पाठ से संबंधित कुछ और प्रश्न  :

गुणनखंड प्रमेय लागू करके बताइए कि निम्नलिखित स्थितियों में से प्रत्येक स्थिति में g(x), p(x) का एक गुणनखंड है या नहीं: (i) p(x) = 2x^{3} + x^{2} - 2x - 1 , g(x) = x + 1 (ii) p(x) = x^{3} + 3x^{2} + 3x + 1 , g(x) = x + 2 (iii) p(x) = x^{3} - 4x^{2} + x + 6 , g(x) = x - 3

https://brainly.in/question/10166503

 

जाँच कीजिए कि 7 + 3x is a factor of 3x^{3} + 7x का एक गुणनखंड है या नहीं।

https://brainly.in/question/10166501

 

Answered by Anonymous
6

\textbf{\underline{\underline{According\:to\:the\:Question}}}  

x + 1 = 0

x = -1

Now we have :-

p(x) = x³ + x² + x + 1

Substitute the value of x :-

p(-1) = (-1)³ + (-1)² + (-1) +1

⇒ p(-1) = - 1 + 1 - 1 + 1

p(-1) = 0

Now 2 :-

 

Substitute the value of x :-

p(x) =  x⁴ + x³ + x² + x + 1

p(-1) = (-1)⁴ + (-1)³ + (-1)² + (-1) + 1

p(-1) = 1 - 1 + 1 - 1 + 1

p(-1) = 0 + 0 + 1

p(-1) = 1

Now 3 :-

 

p(x) = x⁴ + 3x³ + 3x² + x + 1

p(-1)= (-1)⁴ + 3(-1)³ + 3(-1)² + (-1) + 1

p(-1)‌ = 1 - 3 + 3 - 1 + 1

p(-1) =  1 - 1 +1 - 3 + 3

p(-1) = 0 + 1 + 0  

p(-1) = 1

Now 4 :-

 

Substitute the value of x :-

p(x) = x³ - x²- (2 + √2)x +√2

p(-1) = (-1)³- (-1)²- (2 + √2)(- 1) +√2

p(-1) = -1 - 1 + 2 + √2 + √2

p(-1) = - 2  + 2 + √2 + √2

p(-1) = 0 + 2√2

p(-1) = 2√2


maahira17: Answer in HINDI...
Anonymous: U can understand the solution
nikitasingh79: Question is asked in Hindi so you have to answer in Hindi...
nikitasingh79: otherwise it will get deleted
Anonymous: But if I will modify it in hindi then it will look like u
Anonymous: Then moderater will delete my answers
Anonymous: My answer is correct and easy to understand by any users including Hindi users
Anonymous: My solution is 100% correct
Anonymous: Too many users give answer in English which is not correct then it means u will delete all answers
Similar questions