btao re.........................
Answers
A geostationary satellite is orbiting the earth at a height 6R above the Earth surface where R is the radius of earth what will be the time period of a satellite at height 2.5 R from the surface of the earth?
- Height of First satellite (H₁) = 6 R
- Height of Second Satellite (H₂) = 2.5 R
- Radius of Earth = R.
Firstly we Need to Find the Radius of Both the satellites,
First satellite:-
⇒ Radius of satellite = Height of Satellite + Radius of earth
⇒ R₁ = H₁ + R
⇒ R₁ = 6R + R
⇒ R₁ = 7R.
Second satellite:-
⇒ Radius of satellite = Height of Satellite + Radius of earth
⇒ R₂ = H₁ + R
⇒ R₂ = 2.5R + R
⇒ R₂ = 3.5R.
Now, From Kepler's third law of planetary motion I.e. Law of Periods:-
Now,
Reciprocating it,
Substituting the values,
Now, T₁ = 24 Hours.
Substituting,
So, the Time period of Another satellite is 6√2 Hours.
{ \huge \bf { \mid{ \overline{ \underline{Question}}} \mid}}∣
Question
∣
A geostationary satellite is orbiting the earth at a height 6R above the Earth surface where R is the radius of earth what will be the time period of a satellite at height 2.5 R from the surface of the earth?
\huge{\bold{\underline{\underline{....Answer....}}}}
....Answer....
\huge{\bold{\underline{Given:-}}}
Given:−
Height of First satellite (H₁) = 6 R
Height of Second Satellite (H₂) = 2.5 R
Radius of Earth = R.
\huge{\bold{\underline{Explanation:-}}}
Explanation:−
$$\rule{300}{1.5}$$
Firstly we Need to Find the Radius of Both the satellites,
First satellite:-
⇒ Radius of satellite = Height of Satellite + Radius of earth
⇒ R₁ = H₁ + R
⇒ R₁ = 6R + R
⇒ R₁ = 7R.
Second satellite:-
⇒ Radius of satellite = Height of Satellite + Radius of earth
⇒ R₂ = H₁ + R
⇒ R₂ = 2.5R + R
⇒ R₂ = 3.5R.
$$\rule{300}{1.5}$$
$$\rule{300}{1.5}$$
Now, From Kepler's third law of planetary motion I.e. Law of Periods:-
$$\large{\boxed{\tt T^2 \propto R^3}}$$
Now,
$$\large{\tt \leadsto \bigg[\dfrac{T_1}{T_2}\bigg]^2 = \bigg[\dfrac{R_1}{R_2}\bigg]^3}$$
Reciprocating it,
$$\large{\tt \leadsto \bigg[\dfrac{T_2}{T_1}\bigg]^2 = \bigg[\dfrac{R_2}{R_1}\bigg]^3}$$
Substituting the values,
$$\large{\tt \leadsto \bigg[\dfrac{T_2}{T_1}\bigg]^2 = \bigg[\dfrac{3.5 R}{7 R}\bigg]^3}$$
$$\large{\tt \leadsto \bigg[\dfrac{T_2}{T_1}\bigg]^2 = \bigg[\cancel{\dfrac{3.5 R}{7 R}}\bigg]^3}$$
$$\large{\tt \leadsto \bigg[\dfrac{T_2}{T_1}\bigg]^2 = \bigg[\dfrac{1}{2}\bigg]^3}$$
$$\large{\tt \leadsto \bigg[\dfrac{T_2^2}{T_1^2}\bigg] = \bigg[\dfrac{1}{8}\bigg]}$$
$$\large{\tt \leadsto T_2^2 = \dfrac{T_1^2}{8}}$$
$$\large{\tt \leadsto T_2 = \sqrt{\dfrac{T_1^2}{8}}}$$
$$\large{\tt \leadsto T_2 = \dfrac{T_1}{2 \sqrt{2}}}$$
Now, T₁ = 24 Hours.
Substituting,
$$\large{\tt \leadsto T_2 = \dfrac{24}{2 \sqrt{2}}}$$
$$\large{\tt \leadsto T_2 = \dfrac{\cancel{24}}{\cancel{2} \sqrt{2}}}$$
$$\large{\tt \leadsto T_2 = \dfrac{12}{\sqrt{2}}}$$
$$\large{\tt \leadsto T_2 = \cancel{\dfrac{12}{\sqrt{2}}}}$$
$$\huge{\boxed{\boxed{\tt T_2 = 6 \sqrt{2} \: Hours}}}$$
So, the Time period of Another satellite is 6√2 Hours.
$$\rule{300}{1.5}$$