Hindi, asked by adityapuri09553, 6 hours ago

बदलू की बेटियां की कलाइयों पर लाख की चूड़िया सजने का क्या रहस्य था​

Answers

Answered by ItxAttitude
0

Answer:

Answer:

 \huge \frac{13}{420}

Step-by-step explanation:

\int_{0}^{1} \int_{ {y}^{2} }^{1 - y } \int_{0}^{1 - x} xdzdxdy \\  \\  = \int_{0}^{1} \int_{ {y}^{2} }^{1 - y } \int_{0}^{1 - x} \{ xz \}dxdy \\  \\  = \int_{0}^{1} \int_{ {y}^{2}} ^{1 - y} x({1 - x} )dxdy \\  \\  =   \int_{0}^{1} \int_{ {y}^{2} }^{1 - y }( \frac{ {x}^{2} }{2}  -   \frac{ {x}^{3} }{3} )dy \\  \\  =    \int_{0}^{1} (\frac{ {(1 - y)}^{2} }{2}  -   \frac{ {(1 - y)}^{3} }{3}  - \frac{ {(y {}^{2} )}^{2} }{2}   +   \frac{ {( {y}^{2}) }^{3} }{3} )dy dy  \\  \\using \: integral \: property \: in \: first \: two \: terms \\   \int _{0} ^{1} f(y) \: dy =   \int _{0} ^{1} f(1 - y) \: dy \\   \\   = \  \int _{0} ^{1} ( \frac{ {y}^{2} }{2}  -   \frac{ {y}^{3} }{3} -  \frac{ {y}^{4} }{2}  +  \frac{ {y}^{6} }{3}  )dy  \\  \\  = \frac{ {y}^{3} }{6}  -   \frac{ {y}^{4} }{12} -  \frac{ {y}^{5} }{10}  +  \frac{ {y}^{7} }{21}   \:  \:  \{ \: lim \:  \: 0 \: to \: 1 \\  \\  =  \frac{1}{6}  -  \frac{1}{12}  -  \frac{1}{10}  +  \frac{1}{21}  \\  \\  =  \frac{70 - 35 - 42 + 20}{420}  \\  \\  =  \frac{13}{420}

COPIED;)

Similar questions