Math, asked by skkujurrourkela, 3 months ago

bu selling a camera for 2400rupees, if mena loses 4%. at what price much she sell to gain 12%?​

Answers

Answered by abhi569
7

Answer:

Rs 2800

Step-by-step explanation:

Let the original price be x. Man losses an amount of 4%:  

⇒ orig. price - 4% of orig. = 2400  

⇒ x - 4% of x = 2400

⇒ x - (4/100  × x) = 2400

⇒ (100x - 4x)/100 = 2400

⇒ x = (2400 × 100)/96  

⇒ x = 2500  

For a gain of 12%:  

price would be = original + 12% of original  

             = 2500 + (12/100 × 2400)  

             = 2500 + 300  

             = 2800

Answered by Anonymous
273

Answer:

  \large\underline \red {\sf {\pmb{Given}}}

  • ➛ A camera selling for 2400 rupees,

  \large \underline \red{\sf \pmb{To \:  Find }}

  • ➛ If mena loses 4%. at what price much she sell to gain 12%?

 \large \underline \red{ \sf \pmb{Using  \: Formulas}}

 \circ{ \underline{\boxed{ \sf \purple{ C.P} = \pink{\dfrac{100}{100-loss\%} \times S.P}}}}

 \circ{\underline{\boxed{\sf \purple{ S.P} = \pink{\dfrac{100 + Profit\%}{100} \times C.P}}}}

 \large \underline \red{\sf \pmb{Solution }}

 \pink\bigstar \: \underline \frak{ \pmb{Firstly,Finding \:  the \:  cost  \: price  \: of  \: camera}}

 :  \implies{ \sf{ C.P} ={\dfrac{100}{100-loss\%} \times S.P}}

  • Substituting the values

 :  \implies{ \sf{ C.P} ={\dfrac{100}{100 - 4} \times2400 }}

 :  \implies{ \sf{ C.P} ={\dfrac{100}{96} \times2400 }}

 :  \implies{ \sf{ C.P} ={\dfrac{100} {\cancel{96}} \times \cancel{2400 }}}

 :  \implies{ \sf{ C.P} =100 \times {25}}

 :  \implies{ \bf \red{{ C.P} = \times {2500}}}

  • The cost price of camera is Rs.2500

 \pink\bigstar\underline\frak{ \pmb{Now,Finding \:  the \:  Selling  \: price  \: of  \: camera }}

 :   \implies\sf{ S.P} ={\dfrac{100 + Profit\%}{100} \times C.P}

  • Substituting the values

 :   \implies\sf{ S.P} ={\dfrac{100 + 12}{100} \times 2500}

 :   \implies\sf{ S.P} ={\dfrac{112}{100} \times 2500}

 :   \implies\sf{ S.P} ={\dfrac{112} {\cancel{100}} \times \cancel{ 2500}}

:   \implies\sf{ S.P} =112 \times 25

:   \implies\bf \red{{ S.P} =2800}

  • Henceforth,Mena sell the camera in Rs.2800 to gain 12%.

 \large \underline \red{ \sf \pmb{Additional  \: Information}}

★ Discount is a reduction given on market price.

★ Discount = Marketed price - Sale price.

★ Discount can be calculated when discount percentage is given.

★ Discount = Discount percentage of Marketed Price

➣ Additional expenses made after buying an article are included in the cost price and are known to be “overhead expenses”

★ CP = Buying Price + Overhead expenses.

➣ Sales tax is charged on sale of an item by the government and is added to the bill amount.

★ Sale tax = Tax % of bill amount

♛ Some extra formulas -

★ Amount when interest is compounded annually - P(1+R/100)^n

★ Amount when interest is compounded half yearly - P(1+R/200)^2n

{\bf{Where,}}

  • ↝ P denotes Principal
  • ↝ R denotes rate of interest
  • ↝ n denotes time
  • ↝ R/2 denotes half yearly rate
  • ↝ 2n denotes number of half year

Some important formulas -

\small\begin{gathered}\begin{gathered}\large\boxed{ \begin{array}{cc}\large\sf\dag \: {\underline{More \: Formulae}} \\ \\ \bigstar \: \sf{Gain = S.P – C.P} \\ \\ \bigstar \:\sf{Loss = C.P – S.P} \\ \\ \bigstar \: \sf{Gain \: \% = \Bigg( \dfrac{Gain}{C.P} \times 100 \Bigg)\%} \\ \\ \bigstar \: \sf{loss \: \% = \Bigg( \dfrac{loss}{C.P} \times 100 \Bigg)\%} \\ \\ \bigstar \: \sf{S.P = \dfrac{100+Gain\%}{100} \times C.P} \\ \\ \bigstar \: \sf{ C.P =\dfrac{100}{100+Gain\%} \times S.P} \\ \\\bigstar \: \sf{ S.P = \dfrac{100-loss\%}{100} \times C.P} \\ \\ \bigstar \: \sf{ C.P =\dfrac{100}{100-loss\%} \times S.P}\end{array} }\end{gathered}\end{gathered}

Similar questions