Math, asked by Anonymous, 8 months ago

by actual division find the quotient and the remainder when
(i) f(y) =3y³+6y²+7y-2 id divided by 3y -1

(ii)q(t) =2t⁴+3t³-2t²+3t+6 is divided by ( t + 2)

NO SPAMMING
solve with solution......​

Answers

Answered by mehreennaikoo123
10

➡️lets solve for f

fy =  \frac{ {3y}^{3} +  {6y}^{2} + 7y - 2  }{3y - 1}

Multiply both sides by 3y-1

3f {y}^{2}  - fy =  {3y}^{3}  + 6 {y}^{2}  + 7y - 2

Factor out variable f

f( {3y}^{2}  - y) =  {3y}^{3}  +  {6y}^{2}  + 7y - 2

Divide both sides by 3y^2-y

 \frac{f( {3y}^{2} - y) }{ {3y}^{2}  - y}  =  \frac{ {3y}^{2} +  {6y}^{2}   + 7y - 2}{ {3y}^{2}  - y}

f =  \frac{ {3y}^{3}  +  {6y}^{2} + 7y - 2 }{3 {y}^{2}  - y}

➡️Lets solve for q

qt =  \frac{ {2t}^{4} +  {3t}^{3} -  {2t}^{2}   + 3t + 6 }{t + 2}

Multiply both sides by t+2

 {qt}^{2}  + 2qt =  {2t}^{4}  +  {3t}^{3}  -  {2t}^{2}  + 3t + 6

factor out variable q.

q( {t}^{2}  + 2t) =  {2t}^{4}  +  {3t}^{3}  -  {2t}^{2}  + 3t + 6

Divide both sides by t^2+2t

 \frac{q( {t}^{2} + 2t) }{ {t}^{2} 2t}  =  \frac{ {2t}^{4 + 3 {t}^{3} } - 2 {t}^{2}  + 3t + 6 }{ {t}^{2} + 2t }

q =  \frac{ {2t}^{4} +  {3t}^{3}   +  {2t}^{2}  + 3t + 6}{ {t}^{2} + 2t }

Similar questions