Math, asked by kaurmanleen28, 5 months ago

By applying ASA congruence rule, it is to be established that AABC=AQRP
and it is given that BC = RP. What additional information is needed to
establish the congruence?​

Answers

Answered by Aloneboi26
1

Hᴇʏ ɢᴜʏs,

\begin{gathered}\begin{gathered}\begin{gathered}\begin{gathered}\begin{gathered}\begin{gathered}\sf Trigonometry\: Table \\ \begin{gathered}\begin{gathered}\begin{gathered}\begin{gathered}\boxed{\boxed{\begin{array}{ |c |c|c|c|c|c|} \bf\angle A & \bf{0}^{ \circ} & \bf{30}^{ \circ} & \bf{45}^{ \circ} & \bf{60}^{ \circ} & \bf{90}^{ \circ} \\ \\ \rm sin A & 0 & \dfrac{1}{2}& \dfrac{1}{ \sqrt{2} } & \dfrac{ \sqrt{3}}{2} &1 \\ \\ \rm cos \: A & 1 & \dfrac{ \sqrt{3} }{2}& \dfrac{1}{ \sqrt{2} } & \dfrac{1}{2} &0 \\ \\ \rm tan A & 0 & \dfrac{1}{ \sqrt{3} }&1 & \sqrt{3} & \rm \infty \\ \\ \rm cosec A & \rm \infty & 2& \sqrt{2} & \dfrac{2}{ \sqrt{3} } &1 \\ \\ \rm sec A & 1 & \dfrac{2}{ \sqrt{3} }& \sqrt{2} & 2 & \rm \infty \\ \\ \rm cot A & \rm \infty & \sqrt{3} & 1 & \dfrac{1}{ \sqrt{3} } & 0 \end{array}}}\end{gathered}\end{gathered}\end{gathered} \end{gathered}\end{gathered}\end{gathered}\end{gathered}\end{gathered} \end{gathered}\end{gathered}

TrigonometryTable

Qᴜᴇsᴛɪᴏɴ-:

Eᴠᴀʟᴜᴀᴛᴇ ᴛʜɪs :

I) sɪɴ60°ᴄᴏs30°+sɪɴ30°ᴄᴏs60°

Yᴏᴜ ᴄᴀɴ ᴛᴀᴋᴇ ʜᴇʟᴘ ғʀᴏᴍ ᴛʜᴇ ᴀʙᴏᴠᴇ ᴛᴀʙʟᴇ.

Similar questions
Math, 11 months ago