Math, asked by vedantwahare, 11 months ago

By basic proportionality theorem In triangle XYZ if seg PQll seg XY then​

Attachments:

Answers

Answered by Anonymous
2

\red{\underline{\underline{Answer:}}}

\sf{\frac{XP}{PY}=\frac{ZQ}{QY}}

\sf\green{\underline{\underline{Solution:}}}

\sf{In \ \triangle \ XYZ \ and \ \triangle \ PYQ,}

\sf{seg \ PQ \ is \ parallel \ to \ seg \ XZ..... given}

\sf{\angle \ YXZ=\angle \ YPQ... corresponding \ angles}

\sf{\angle \ YZX=\angle \ YQP... corresponding \ angles}

\sf{\angle \ XYZ=\angle \ PYQ... common \ angle}

\sf{\therefore{By \ AAA \ test \ of \ similarity.}}

\sf{\triangle \ XYZ \ and \ \triangle \ PYQ \ are \ similar.}

\sf{\therefore{\frac{XY}{PY}=\frac{ZY}{QY}...(c.s.s.t.)}}

\sf{By \ dividendo}

\sf{\frac{XY-PY}{PY}=\frac{ZY-QY}{QY}}

\sf{But, \ X-P-Y \ and \ Z-Q-Y}

\sf{\therefore{XY-PY=XP \ and \ ZY-QY=ZQ}}

\sf\purple{\implies{\frac{XP}{PY}=\frac{ZQ}{QY}}}

Answered by TheSentinel
57

\purple{\underline{\pink{\boxed{\boxed{\red{\star{\sf Question:}}}}}}} \\ \\

\rm{By \ basic \ proportionality \  theorem \  In \  triangle \  XYZ  \ if \ seg  \ PQ \ ll \  seg \  XY \  then} \\

\rm{a) \:  \:  \:  \frac{AP}{BP}  \:  =  \:  \frac{QC}{BQ} } \\

\rm{b) \:  \:  \:  \frac{XP}{PY}  \:  =  \:  \frac{YQ}{QZ} } \\

\rm{a) \:  \:  \:  \frac{XP}{PY}  \:  =  \:  \frac{ZQ}{QY} } \\

\rm{a) \:  \:  \:  \frac{XY}{YZ}  \:  =  \:  \frac{QZ}{YQ} } \\

_________________________________________

\purple{\underline{\orange{\boxed{\boxed{\green{\star{\sf Answer:}}}}}}} \\ \\

\bf{\pink{\boxed{\star{\blue{c) \ \frac{XP}{PY}=\frac{ZQ}{QY}}}}}}

_________________________________________

\sf\large\underline\pink{Given:} \\ \\

\rm{In \  triangle \  XYZ  \ if \ seg  \ PQ \ ll \  seg \  XY }

_________________________________________

\sf\large\underline\blue{To \ Find:} \\ \\

\rm{Correct \ option}

_________________________________________

\green{\underline{\red{\boxed{\boxed{\purple{\star{\sf Solution:}}}}}}} \\ \\

\rm{In \ \triangle \ XYZ \ and \ \triangle \ PYQ,}

\rm{Given \ that }

\rm{seg \ PQ \ is \ parallel \ to \ seg \ XZ}

\rm{\angle \ YXZ \ = \ \angle \ YPQ \ ...\ corresponding \ angles} \\ \\

\rm{\angle \ YZX \ = \ \angle \ YQP \ .... \  corresponding \ angles} \\ \\

\rm{\angle \ XYZ=\angle \ PYQ \ ..... \ common \ angle} \\ \\

\rm{\implies{By \ AAA \ test \ of \ similarity.}}

\rm\therefore{\triangle \ XYZ \ and \ \triangle \ PYQ \ are \ similar.} \\

\rm{\implies{\frac{XY}{PY}=\frac{ZY}{QY}}} \\ \\

\rm{By \ using \ dividendo \ property}

\rm{\frac{XY-PY}{PY}=\frac{ZY-QY}{QY}}

\rm{But, \ X-P-Y \ and \ Z-Q-Y}

\rm{\implies{XY-PY=XP} }

\rm{and \ ZY-QY=ZQ}

\sf{\therefore{\frac{XP}{PY} \ = \ \frac{ZQ}{QY}}}

\bf{\pink{\boxed{\star{\blue{c) \ \frac{XP}{PY}=\frac{ZQ}{QY}}}}}}

_________________________________________

\tt\red{Hope \ it \ helps \ :))}

Similar questions