Math, asked by tejas316, 1 year ago

By completing sq methods​

Attachments:

Answers

Answered by Anonymous
16

\underline{\textbf{\large{Step-by-step explanation:}}}

▶finding the roots of quadratic polynomial by completing square method

6x² + x - 2 = 0

Divide by 6 on both the sides

x^2+ \frac {x}{6}- \frac{1}{3} = 0

x^2+\frac{x}{6}= \frac{1}{3}

x^2+\frac{1}{6}x = \frac{1}{3}

Adding both sides( \frac{1}{2}\times (coefficient of x)) =

= (\frac{1}{2}\times \frac{1}{6})^2

= (\frac{1}{12})^2

=\frac{1}{144}

x^2+ \frac{1}{6}x +\frac{1}{144} =\frac{1}{3}+\frac{1}{144}

(x + (\frac{1}{12}))^2=\frac{1}{3}\times\frac{48}{48} + \frac{1}{144}

(x + (\frac{1}{12}))^2 = \frac{48}{144} + \frac{1}{144}

(x + (\frac{1}{12}))^2=\frac{(48 + 1)}{144}

(x + (\frac{1}{12}))^2= \frac{49}{144}

(x + (\frac{1}{12}))= \sqrt{(\frac{49}{ 144})}

(x +\frac{1}{12}) = ± \frac{7}{12}

x =\frac{7}{12}±\frac{1}{12}

x = \frac{(7-1)}{12} = \frac{6}{12} = \frac{1}{2}

\boxed{x=\frac{1}{2}}

OR

x = \frac{(7+1)}{12}

x = \frac{8}{12} = \frac{2}{3}

\boxed{x=\frac{2}{3}}

Similar questions