Math, asked by sojaraamir792, 2 months ago

by cramer's rule 6x-4y=-12;8x-3y=-2​

Answers

Answered by Anonymous
20

Question :

  1. 6x - 4y = -12 ; 8x - 3y = -2

Lesson :- Linear equations in two variable

Solution :

  • Refer the attachment

   

Linear equation in two variable :-

2x + 5y = 12

x - y = 4

2x + 5y - 12 = 0

ax + by = c

  OR

ax + by + c = 0

a, b and c → Constants

x and y → Variables

(i) a, b and c → Real numbers

(ii) a, b  → At least one non-zero \sf{(a^{2}+b^{2} \neq 0)}

2x + 5y = 12

(a) When x = 1 and y = 2  (✔)

LHS = 2(1) + 5(2)

        = 2 + 10 = 12 = RHS

(b) When x = 3 and y = 1  (X)

     LHS = 2(3) + 5(1)

             = 6 + 5 = 11 ≠ RHS

Attachments:
Answered by mathdude500
2

Solve the equations :-

  • 6x - 4y = 12

  • 8x - 3y = 2

Solution :-

The given equations in matrix form can be represented as

\rm :\longmapsto\:\begin{bmatrix} 6 &  - 4\\ 8 &  -  3\end{bmatrix}\begin{bmatrix} x \\ y\end{bmatrix} = \begin{bmatrix} 12 \\ 2\end{bmatrix}

where,

\rm :\longmapsto\:D \:  =  \: \begin{array}{|cc|}\sf 6 &\sf  - 4  \\ \sf 8 &\sf  - 3 \\\end{array}

\rm :\longmapsto\:D =  - 18 + 32

\rm :\longmapsto\:D = 14

\rm :\implies\:system \: of \: equations \: have \: unique \: solution

Consider,

\rm :\longmapsto\:D_1 \:  =  \: \begin{array}{|cc|}\sf 12 &\sf  - 4  \\ \sf 2 &\sf  - 3 \\\end{array}

\rm :\longmapsto\:D_1 =  - 36 + 8

\rm :\longmapsto\:D_1 =  - 28

Consider,

\rm :\longmapsto\:D_2 \:  =  \: \begin{array}{|cc|}\sf 6 &\sf  12  \\ \sf 8 &\sf  2 \\\end{array}

\rm :\longmapsto\:D_2 = 12 - 96

\rm :\longmapsto\:D_2 =  - 84

So,

\rm :\longmapsto\:x = \dfrac{D_1}{D}  =  - \dfrac{28}{14}  =  - 2

\rm :\longmapsto\:y = \dfrac{D_2}{D}  =  - \dfrac{84}{14}  =  - 6

\begin{gathered}\begin{gathered}\bf  \: Hence - \begin{cases} &\sf{x \:  =  \:  -  \: 2} \\ &\sf{y \:  =  \:  -  \: 6} \end{cases}\end{gathered}\end{gathered}

Similar questions