Math, asked by prajapatipriyanshu94, 10 months ago

By cross multiplication method find such a two digit number such that the digit at unit place is twice the digit at tens place and the the number is 36 more than the original number​

Answers

Answered by jagriti8jiwanshu
1

Step-by-step explanation:

......................

Attachments:
Answered by Anonymous
5

❏ SolutioN :

\setlength{\unitlength}{1.0 cm}}\begin{picture}(12,4)\thicklines\put(1,1){\line(1,0){6.5}}\put(1,1.1){\line(1,0){6.5}}\end{picture}

\blacksquare\:\:\footnotesize{\underline{\underline{Given}}}

\footnotesize{\text{digit at unit place is twice the digit at tens place}}

\footnotesize{\text{the reverse number is 36 more than the original number}}

\blacksquare\:\:\footnotesize{\underline{\underline{To\: Find}}}

\footnotesize{\text{find the two digits and the number }}

\setlength{\unitlength}{1.0 cm}}\begin{picture}(12,4)\thicklines\put(1,1){\line(1,0){6.5}}\put(1,1.1){\line(1,0){6.5}}\end{picture}

\footnotesize{\text{Let , the 1st place digit is = X}}

\footnotesize{\text{And , the 2nd place digit is = Y}}

\therefore\:\:\footnotesize{\text{The Original Number is = 10Y+X}}

And

\therefore\:\:\footnotesize{\text{The Reverse Number is = 10X+Y}}

\blacksquare\:\:\footnotesize{\underline{\underline{\red{Condition:1}}}}

\footnotesize{\text{digit at unit place is twice the digit at tens place}}

\therefore\:\:\footnotesize{X=2Y}

\implies\footnotesize{X-2Y+0=0} ...................(i)

\blacksquare\:\:\footnotesize{\underline{\underline{\red{Condition:2}}}}

\footnotesize{\text{the reverse number is 36 more than the original number}}

\therefore\:\:\footnotesize{(10X+Y)=(10Y+X)+36}

\implies\footnotesize{10X+Y-10Y-X=36}

\implies\footnotesize{9X-9Y=36}

\implies\footnotesize{9(X-Y)=36}

\implies\footnotesize{X-Y=\dfrac{\cancel{36}}{\cancel9}}

\implies\footnotesize{X-Y=4}

\implies\footnotesize{X-Y-4=0} ......................(ii)

\setlength{\unitlength}{1.0 cm}}\begin{picture}(12,4)\thicklines\put(1,1){\line(1,0){6.5}}\put(1,1.1){\line(1,0){6.5}}\end{picture}

Cross Multiplication process

\footnotesize{\text{for the two linear equations in 2 variables , }}

\footnotesize{a_1x+b_1+c_1=0}

\footnotesize{a_2x+b_2+c_2=0}

 \setlength{\unitlength}{1.6mm}\begin{picture}(30,20)\linethickness{0.08mm}\put(10,10){$c_1\:\:\:\:\:\:a_1\:\:\:\:\:\:b_1\:\:\:\:\:\:c_1$}\put(10,6){$c_2\:\:\:\:\:\:a_2\:\:\:\:\:\:b_2\:\:\:\:\:\:c_2$}\multiput(12,10)(5,0){3}{\vector(3,-4){2.6}}\multiput(12,7)(5,0){3}{\vector(3,4){2.6}}\put(0,10){.}\end{picture}

\therefore\:\:\footnotesize{\boxed{\dfrac{x}{b_1c_2-b_2c_1}=\dfrac{y}{c_1a_2-c_2a_1}=\dfrac{1}{a_1b_2-a_2b_1}}}

\setlength{\unitlength}{1.0 cm}}\begin{picture}(12,4)\thicklines\put(1,1){\line(1,0){6.5}}\put(1,1.1){\line(1,0){6.5}}\end{picture}

\implies\footnotesize{X-2Y+0=0} ...................(i)

\implies\footnotesize{X-Y-4=0} ..................(ii)

 \setlength{\unitlength}{1.6mm}\begin{picture}(30,20)\linethickness{0.08mm}\put(10,10){$0\:\:\:\:\:\:\:1\:\:\:\:\:\:(-2)\:\:\:\:\:\:0$}\put(7,6){$(-4)\:\:\:\:\:\:1\:\:\:\:\:\:(-1)\:\:\:\:\:\:(-4)$}\multiput(11.5,10)(4.5,0){2}{\vector(3,-4){2.6}}\multiput(11.5,7)(4.5,0){2}{\vector(3,4){2.6}}\put(23,10){\vector(3,-4){2.6}}\put(23,7){\vector(3,4){2.6}}\put(0,10){.}\end{picture}

\therefore\:\:\footnotesize{\dfrac{x}{(-2)(-4)-(-1)(0)}=\dfrac{y}{(0)(1)-(-4)(1)}=\dfrac{1}{(1)(-1)-(1)(-2)}}

\implies\footnotesize{\dfrac{x}{8-0}=\dfrac{y}{0+4}=\dfrac{1}{-1+2}}

\implies\footnotesize{\dfrac{x}{8}+\dfrac{y}{4}=\dfrac{1}{1}}

\implies\footnotesize{\dfrac{x}{8}=\dfrac{y}{4}=1}

\blacksquare\:\:\footnotesize{\dfrac{x}{8}=1}

\implies\:\:\footnotesize{\boxed{x=8}}

\blacksquare\:\:\footnotesize{\dfrac{y}{4}=1}

\implies\:\:\footnotesize{\boxed{y=4}}

\therefore\:\:\footnotesize{\text{The digits are 8 and 4 }}

And

\therefore\:\:\footnotesize{\text{The Original Number is = 10Y+X}}

\implies\:\:\footnotesize{\text{The Original Number is = 10(4)+8}}

\implies\:\:\footnotesize{\text{The Original Number is = 40+8}}

\implies\:\:\footnotesize{\boxed{\text{The Original Number is = 48}}}

\setlength{\unitlength}{1.0 cm}}\begin{picture}(12,4)\thicklines\put(1,1){\line(1,0){6.5}}\put(1,1.1){\line(1,0){6.5}}\end{picture}

Similar questions