Math, asked by INNOCENTDEVIL006, 9 months ago

By division method prove that √23 is an irrational number


no spams​

Answers

Answered by reenapandey581
3

Answer:

(i) 23 is not a perfect square values so that, it is an irrational number. The decimal expansion of above number is terminating, so that it is a rational number. The decimal expansion of above number is non-terminating recurring, so that, it is a rational number.

Step-by-step explanation:

hope it's helps you please make me brainest and follow me.

Answered by Mihir1001
11
\huge{\underline{\mathfrak{\textcolor{blue}{Answer :}}}}
\huge\boxed{\fcolorbox{red}{pink}{irrational}}
\huge{\underline{\mathrm{\textcolor{red}{Step-by-step \: \: explanation :}}}}

\LARGE{\underline{\mathtt{\textcolor{violet}{Given :-}}}}
⚪ root over 23 [ √23 ]

\LARGE{\underline{\mathtt{\textcolor{green}{To \: \: prove :-}}}}
 \sqrt{23} is an irrational number.

\LARGE{\underline{\mathtt{\textcolor{teal}{Concept \: \: used :-}}}}
⚪ Real numbers
⚪ Irrational numbers

\LARGE{\underline{\mathtt{\textcolor{blue}{Proof :-}}}}
✒ If possible,  \sqrt{23} be a rational number.

let  \sqrt{23} = \Large{ \frac{a}{b} }, where a and b are co-primes and b ≠ 0.

Then,
 \sqrt{23} = \Large{ \frac{a}{b} }

On squaring both the sides :

 \Rightarrow { \left( \sqrt{23} \right) }^{2} = \Large{ { \left( \frac{a}{b} \right) }^{2} }

 \Rightarrow 23 = \Large{ \frac{ {a}^{2} }{ {b}^{2} } }

 \Rightarrow 23 {b}^{2} = {a}^{2}

 \Rightarrow {a}^{2} = 23 {b}^{2} ——————— ( 1 )

Therefore,  {a}^{2} is divisible by 23
Therefore, a is also divisible by 23.

let a = 23c, for some integer c. ——————— ( 2 )

On substituting ( 2 ) in ( 1 ) , we get :

 {(23c)}^{2} = 23 {b}^{2}

 \Rightarrow 529 {c}^{2} = 23 {b}^{2}

 \Rightarrow {}^{23} \: \cancel{529} {c}^{2} = {}^{1} \: \cancel{23} {b}^{2}

 \Rightarrow {b}^{2} = 23 {c}^{2}

Therefore,  {b}^{2} is divisible by 23.
Therefore, b is also divisible by 23.

Therefore, a and b have a common factor 23.
This contradicts the fact that a and b are co-primes.
This contradiction arises on assuming  \sqrt{23} to be a rational number.
So, our assumption is wrong.
Hence,  \sqrt{23} is an \sf\green{\underline{\blue{irrational \: number}}}.

\LARGE{\underline{\mathtt{\textcolor{magenta}{Conclusion :-}}}}
 \sqrt{23} is an \sf\green{\underline{\blue{irrational \: number}}}.

{\textcolor{purple}{\fcolorbox{teal}{cyan}{Your \: required \: answer \: is \: above......... keep \: smiling........ ;-D}}}<marquee direction="down" scrollamount="1/10">❤just love❤</marquee><marquee direction="up" scrollamount="1/10">❤just love❤</marquee>
.
.
.
.
.
.
.
\bold{hope………. \: this \: answer \: helps \: you \: the \: best .}
and…… mark this answer as ❤BRAINLIEST❤
and. ….. If you can… .then
<p style="background-color:gold">....<b>....<i><u>..follow me..</u>.....!!</i>!</b></p>
Thanks for reading…………………………………………………….. =)
\huge{\fcolorbox{orange}{orange}{brainliest answer}}
<body style="background-color:rgb(225,255,255)">…………<b>…….❤Thanks to all my lovely readers❤……╭∩╮(︶︿︶)╭∩╮……..</b></body>
<marquee direction="left" scrollamount="">Please answer my questions too… ……. …..please¯\_(ツ)_/¯</marquee>
<marquee direction="right" scrollamount="">( ˘ ³˘)♥</marquee>
<marquee bgcolor="pink" behaviour="slide" direction="up" scrollamount="2" height="80px" width="15%">❤thanks❤…</marquee><marquee bgcolor="pink" behaviour="slide" direction="down" scrollamount="2" height="80px" width="27%">……..to…….. my <font color="blue">answers</font>…</marquee><marquee bgcolor="white" behaviour="slide" direction="left" scrollamount="4" height="80px" width="58%"><font color="red">30</font> thanks❤= follow back<br/><font color="red">40</font> thanks❤= no.<br/><font color="red">50</font> thanks❤= inbox<br/><font color="red">100</font> thanks❤= as ur wish… …. ..</marquee>
Similar questions