Math, asked by nitrogeneous5403, 1 year ago

By euclid algorithm to find hcf of 1651 and 2032 and express it in the form of 1651m+2032n

Answers

Answered by anudeep7
6
this is the required form
Attachments:
Answered by Anonymous
33

\huge{\underline{\bf{\red{Solution:-}}}}

we know that 2032>1651,

So we divide 2032 by 1651 .

1651)2032(1

⠀⠀⠀1651

⠀⠀⠀⠀381)1651(4

⠀⠀⠀⠀⠀⠀⠀1524

⠀⠀⠀⠀⠀⠀⠀⠀127)381(3

⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀381.

⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀0

{\pink{\underbrace{\sf{By\: Euclid's\: division\:lemma}}}}\:

:\implies\sf\:2032=1651\times1+381...... ......(i)

:\implies\sf\:1651=381\times4+127............(ii)

:\implies\sf\:381=127\times3+0...........(iii)

\sf\:Since\: remainder\: becomes\:zero.

\sf\:So,

:\implies\sf\:HCF\:(1651,2032)=127.

:\implies\sf\:Now ,

\sf\: From\: equation\:(ii)

:\implies\sf\:1651=381\times4+127

:\implies\sf\:127=1651-381\times4

:\implies\sf\:127=1651-(2032-1651\times1)\times4\:\:\:[from\: (i)]

:\implies\sf\:127=1651-2032\times4+1651\times4

:\implies\sf\:127=1651\times5+2032\times(-4)

\bf\:\green{Hence\:,m=5,\:and\:\:n=-4.}

\bf\pink{So,\:Hcf\:of \:1651\:and\:2032\:is\: }

\bf\pink{expressed\:in\:the\:form\:of}

\bf\pink{=1651m+2032n}

━━━━━━━━━━━━━━━━━━━━━━━━━

Similar questions