Math, asked by ishwarikadu40, 11 hours ago

By factorization method 6y²-y-2=0​

Answers

Answered by XxitztoxicgirlxX
1

Answer:

Use the quadratic formula

=

±

2

4

2

y=\frac{-{\color{#e8710a}{b}} \pm \sqrt{{\color{#e8710a}{b}}^{2}-4{\color{#c92786}{a}}{\color{#129eaf}{c}}}}{2{\color{#c92786}{a}}}

y=2a−b±b2−4ac

Once in standard form, identify a, b and c from the original equation and plug them into the quadratic formula.

6

2

2

=

0

6y^{2}-y-2=0

6y2−y−2=0

=

6

a={\color{#c92786}{6}}

a=6

=

1

b={\color{#e8710a}{-1}}

b=−1

=

2

c={\color{#129eaf}{-2}}

c=−2

=

(

1

)

±

(

1

)

2

4

6

(

2

)

2

6

y=\frac{-({\color{#e8710a}{-1}}) \pm \sqrt{({\color{#e8710a}{-1}})^{2}-4 \cdot {\color{#c92786}{6}}({\color{#129eaf}{-2}})}}{2 \cdot {\color{#c92786}{6}}}

y=2⋅6−(−1)±(−1)2−4⋅6(−2)

2

Simplify

Evaluate the exponent

Multiply the numbers

Add the numbers

Evaluate the square root

Multiply the numbers

=

1

±

7

1

2

y=\frac{1 \pm 7}{12}

y=121±7

3

Separate the equations

To solve for the unknown variable, separate into two equations: one with a plus and the other with a minus.

=

1

+

7

1

2

y=\frac{1+7}{12}

y=121+7

=

1

7

1

2

y=\frac{1-7}{12}

y=121−7

4

Solve

Rearrange and isolate the variable to find each solution

=

2

3

y=\frac{2}{3}

y=32

=

1

2

y=-\frac{1}{2}

y=−21

Solution

=

2

3

=

1

2

y=\frac{2}{3}\\y=-\frac{1}{2}

y=32y=−21

Feedback

https://www.studyrankersonline.com › ...

Using factorization, find the roots of the quadratic equation: 6y2 - y

06-Jan-2018 — 6y2 - y - 2 = 0. 6y2 - 4y + 3y - 2 = 0. 2y (3y - 2) + (3y - 2) = 0. (2y + 1) (3y - 2) = 0. 2y + 1 = 0 3y - 2 = 0. y = -1/2 or y = 2/3.

https://www.tiger-algebra.co

Answered by priya200002
4

Answer:

y = 2/3 Or, -1/2

Step-by-step explanation:

6y² - y - 2 = 0

6y² - (4 - 3)y - 2 = 0

6y² - 4y + 3y - 2 = 0

2y(3y - 2) + 1(3y - 2) = 0

(3y - 2)(2y + 1) = 0

then,

3y - 2 = 0

3y = 2

y = 2/3

OR,

2y + 1 = 0

2y = -1

y = -1/2

Similar questions