By how much is the sum of 8a 4 – 2a 2 b 2 + b 4 and –10a 4 + 3a 2 b 2 + 3b 4 greater than –2a 4 – 2a 2 b 2 + 4b 4 ?
Answers
Answer:
Step-by-step explanation:
Given : Sum of 8a⁴– 2a² b² + b⁴ and –10a⁴ + 3a² b² + 3b⁴
To Find : how much is the sum greater than –2a⁴ – 2a² b² + 4b⁴
Solution:
Sum of 8a⁴– 2a² b² + b⁴ and –10a⁴ + 3a² b² + 3b⁴
= ( 8a⁴– 2a² b² + b⁴) + ( –10a⁴ + 3a² b² + 3b⁴ )
combine like terms
= 8a⁴ –10a⁴ – 2a² b² + 3a² b² + b⁴ + 3b⁴
= –2a⁴ + a² b² + 4b⁴
–2a⁴ + a² b² + 4b⁴ is N greater than –2a⁴ – 2a² b² + 4b⁴
=> –2a⁴ + a² b² + 4b⁴ = N + ( –2a⁴ – 2a² b² + 4b⁴)
=> N = –2a⁴ + a² b² + 4b⁴ – ( –2a⁴ – 2a² b² + 4b⁴)
=> N = –2a⁴ + a² b² + 4b⁴ + 2a⁴ + 2a² b² - 4b⁴
=> N = 3a² b²
Hence Sum of 8a⁴– 2a² b² + b⁴ and –10a⁴ + 3a² b² + 3b⁴ is 3a² b²
greater than –2a⁴ – 2a² b² + 4b⁴
Learn More:
3p³q+2p²q+7 ; 2p²q+4pq-2p³q Add the given polynomial. - Brainly.in
brainly.in/question/11760332
x³-2x²-9 ; 5x³+2x+9 Add the given polynomial. - Brainly.in
brainly.in/question/4560488