Math, asked by getopo7895, 9 months ago

By long division, find the quotient and remainder, when the polynomial
2x4 -5x3+3x-1 is divided by 2x-1.

Answers

Answered by ashishks1912
5

GIVEN :

By long division, find the quotient and remainder, when the polynomial

is divided by 2x-1.

TO FIND :

The quotient and remainder, when the polynomial  2x^4-5x^3+3x-1 is divided by 2x-1 by using Long Division Method

SOLUTION :

Given that when the polynomial  2x^4-5x^3+3x-1 is divided by 2x-1.

By using the Long Division Method we can solve the polynomial as below :

For our convenience, we can write the given polynomial 2x^4-5x^3+3x-1 as 2x^4-5x^3+0x^2+3x-1

             x^3-2x^2-x+1

           ______________________

    2x-1 ) 2x^4-5x^3+0x^2+3x-1

              2x^4-x^3

             (-)___(+)__________

                       -4x^3+0x^2

                       -4x^3+2x^2

                      _(+)__(-)____________

                                  -2x^2+3x

                                  -2x^2+x

                                 _(+)___(-)________

                                            2x-1

                                            2x-1

                                         _(-)_(+)____

                                                 0

                                        __________

When the given polynomial 2x^4-5x^3+3x-1 is divided by 2x-1 by using Long Division Method we have that the remainder is 0 and the quotient is x^3-2x^2-x+1

∴ Quotient=x^3-2x^2-x+1 and Remainder=0

Similar questions