by long division method show that (x-3)factor of 2x^4+3x^3-26x2-5x+6
Answers
Solution :
p(x) = 2x⁴ + 3x³ - 26x² - 5x + 6
g(x) = x - 3
After dividing we obtained :
• Quotient = 2x³ + 9x² + x - 2
• Remainder = 0
Refer to the attachment!
Verification :
★ Dividend = Divisor × Quotient + Remainder
→ 2x⁴ + 3x³ - 26x² - 5x + 6 = (x - 3) × 2x³ + 9x² + x - 2 + 0
→ 2x⁴ + 3x³ - 26x² - 5x + 6 = x(2x³ + 9x² + x - 2) - 3(2x³ + 9x² + x - 2) + 0
→ 2x⁴ + 3x³ - 26x² - 5x + 6 = (2x⁴ + 9x³ + x² - 2x) - (6x³ + 27x² + 3x - 6) + 0
→ 2x⁴ + 3x³ - 26x² - 5x + 6 = 2x⁴ + 9x³ + x² - 2x - 6x³ - 27x² - 3x + 6
→ 2x⁴ + 3x³ - 26x² - 5x + 6 = 2x⁴ + 9x³ - 6x³ - 27x² + x² - 2x - 3x + 6
→ 2x⁴ + 3x³ - 26x² - 5x + 6 = 2x⁴ + 3x³ - 26x² - 5x + 6
(x-3) is factor of the polynomial 2x⁴ + 3x³ - 26x² - 5x + 6
Answer:
❖
❖
Step-by-step explanation:
Let's verify it,
❖ Dividend = Divisor × Quotient + Remainder
- Divided = 2x⁴ + 3x³ - 26x² - 5x + 6
- Divisor = (x - 3)
- Quotient = 2x³ + 9x² + x - 2
- Remainder = 0
→ 2x⁴ + 3x³ - 26x² - 5x + 6 = (x - 3)(2x³ + 9x² + x - 2) + 0
→ 2x⁴ + 3x³ - 26x² - 5x + 6 = 2x⁴ + 9x³ + x² - 2x - 6x³ - 27x² - 3x + 6
→ 2x⁴ + 3x³ - 26x² - 5x + 6 = 2x⁴ + 3x³ - 26x² - 5x + 6
▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬