Math, asked by arjavpatodi200, 9 months ago

by long division method show that (x-3)factor of 2x^4+3x^3-26x2-5x+6

Answers

Answered by StarrySoul
14

Solution :

p(x) = 2x⁴ + 3x³ - 26x² - 5x + 6

g(x) = x - 3

After dividing we obtained :

• Quotient = 2x³ + 9x² + x - 2

• Remainder = 0

Refer to the attachment!

Verification :

★ Dividend = Divisor × Quotient + Remainder

→ 2x⁴ + 3x³ - 26x² - 5x + 6 = (x - 3) × 2x³ + 9x² + x - 2 + 0

→ 2x⁴ + 3x³ - 26x² - 5x + 6 = x(2x³ + 9x² + x - 2) - 3(2x³ + 9x² + x - 2) + 0

→ 2x⁴ + 3x³ - 26x² - 5x + 6 = (2x⁴ + 9x³ + x² - 2x) - (6x³ + 27x² + 3x - 6) + 0

→ 2x⁴ + 3x³ - 26x² - 5x + 6 = 2x⁴ + 9x³ + x² - 2x - 6x³ - 27x² - 3x + 6

→ 2x⁴ + 3x³ - 26x² - 5x + 6 = 2x⁴ + 9x³ - 6x³ - 27x² + x² - 2x - 3x + 6

2x⁴ + 3x³ - 26x² - 5x + 6 = 2x⁴ + 3x³ - 26x² - 5x + 6

\therefore (x-3) is factor of the polynomial 2x⁴ + 3x³ - 26x² - 5x + 6

Attachments:
Answered by MissKalliste
4

Answer:

\fbox\purple{\sf Quotient = 2x^3 + 9x^2 + x - 2}

\fbox\purple{\sf Remainder = 0}

Step-by-step explanation:

Let's verify it,

Dividend = Divisor × Quotient + Remainder

  • Divided = 2x⁴ + 3x³ - 26x² - 5x + 6
  • Divisor = (x - 3)
  • Quotient = 2x³ + 9x² + x - 2
  • Remainder = 0

→ 2x⁴ + 3x³ - 26x² - 5x + 6 = (x - 3)(2x³ + 9x² + x - 2) + 0

→ 2x⁴ + 3x³ - 26x² - 5x + 6 = 2x⁴ + 9x³ + x² - 2x - 6x³ - 27x² - 3x + 6

2x⁴ + 3x³ - 26x² - 5x + 6 = 2x⁴ + 3x³ - 26x² - 5x + 6

\fbox{\sf Hence, Verified. }

\fbox{\sf \therefore (x+3)\:is\: a\: factor\: of\: polynomial\:2x^4 + 3x^3 - 26x^2 - 5x + 6 (as\:given\:in\:the\:question)}

▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬

Attachments:
Similar questions