Math, asked by prabhdeep68, 1 year ago

by mathematical induction prove that 1²+2²+3²+....+n²=n(n+1)(2n+1)/6

Answers

Answered by silentknightoo7
58
hey mate...


by using first step..

put n = 1

(1)². =. (1+1)(2×1+1)/6
1. =. ( 2×3)/6===1

hence n=1 is true

let be put n=k

Attachments:
Answered by KeerthyKP
117
Hii mate
Here's ur answer

Let p(n)=1^2 +2^2 +3^2 +.......+ n^2=n(n+1)(2n+1)/6
case 1:let n=1
then :p(1)=1^2=1
=1(1+1)(2×1+1)/6
=2×3/6
=1
for n=1 ,p(1) is true

assume that p(k) is true for positive integer k i.e.

p(k)=1^2+2^2+.....+k^2=k(k+1)(2k+1)/6

p(k+1)=[1^2+2^2 +3^2+.... +k^2] +(k+1)^2
=k(k+1)(2k+1)/6+(k+1)^2
=k(k+1)(2k+1)+6(k+1)^2
= (k+1)/6[k(2k+1)+6(k+1)]
=(k+1)/6(2k^2+k+6k+6)
=(k+1)/6(2k^2 +7k +6)
=(k+1)/6 [(k+2)+(2k+3)]
=[(k+1)(k+2)(2(k+1)+1]

Hope it helps you
THANK YOU
Attachments:
Similar questions