by mathematical induction s.t 1square+2sqare+.......+nsquare=n(n+1)(2n+1)/2
Answers
Answers
rishu6845
rishu6845 Genius
Step-by-step explanation:
To prove ---->
--------------
n(n+1)(2n+1)
1²+2²+..................+n²=-----------------------
6
proof---> we prove it by pmi
---------
first we prove it for n=1
first term=1²=1
now putting n=1 in RHS
1(1+1)(2×1+1)
=---------------------
6
1(2)(2+1)
=--------------------
6
6
=--------=1
6
so given statement is true for n=1
now let given statement is true for n=k
k(k+1)(2k+1)
1²+2²+3²+........+k²=-----------------------
6
now we prove it is true for n=k+1
for this adding (k+1)² to both sides
k(k+1)(2k+1)
1²+2²+....+k²+(k+1)²=-------------------- +(k+1)²
6
k(2k+1)
=(k+1){--------------------------- +(k+1) }
6
k(2k+1) + 6 (k+1)
=(k+1) {_____________________}
6
2k²+ k + 6k + 6
= (k+1) (--------------------------------)
6
2k²+7k+6
= (k+1) (------------------------)
6
2k² +(4+3)k +6
=(k+1) {------------------------------}
6
2k²+4k+3k+6
=(k+1) {------------------------------}
6
2k(k+2) +3(k+2)
=(k+1) { _________________}
6
(k+2) (2k+3)
=(k+1) {________________}
6
{(k+1)+1}{(2k+2)+1}
=(k+1) [_____________________]
6
(k+1) {(k+1) +1 } {2(k+1)+1}
=--------------------------------------------------
6
so given statement is true for n=k+1 if it's true for n=k
so by principle of mathematical induction given statement is true for any natural number
Hope it helps you
Let ,
For n = 1 , LHS of equation (i) = 1 and RHS of equation (i) = 6/6 = 1
Therefore , P(1) is true
Assume P(K) is true , then
For n = K + 1
Therefore , P(k+1) is true , hence by PMI , P(n) is true for all natural number
_____________ Keep Smiling ☺