Math, asked by karthikgoud893, 11 months ago

by mathematical induction s.t 1square+2sqare+.......+nsquare=n(n+1)(2n+1)/2​

Answers

Answered by anasmirza90990099
0

Answers

rishu6845

rishu6845 Genius

Step-by-step explanation:

To prove ---->

--------------

n(n+1)(2n+1)

1²+2²+..................+n²=-----------------------

6

proof---> we prove it by pmi

---------

first we prove it for n=1

first term=1²=1

now putting n=1 in RHS

1(1+1)(2×1+1)

=---------------------

6

1(2)(2+1)

=--------------------

6

6

=--------=1

6

so given statement is true for n=1

now let given statement is true for n=k

k(k+1)(2k+1)

1²+2²+3²+........+k²=-----------------------

6

now we prove it is true for n=k+1

for this adding (k+1)² to both sides

k(k+1)(2k+1)

1²+2²+....+k²+(k+1)²=-------------------- +(k+1)²

6

k(2k+1)

=(k+1){--------------------------- +(k+1) }

6

k(2k+1) + 6 (k+1)

=(k+1) {_____________________}

6

2k²+ k + 6k + 6

= (k+1) (--------------------------------)

6

2k²+7k+6

= (k+1) (------------------------)

6

2k² +(4+3)k +6

=(k+1) {------------------------------}

6

2k²+4k+3k+6

=(k+1) {------------------------------}

6

2k(k+2) +3(k+2)

=(k+1) { _________________}

6

(k+2) (2k+3)

=(k+1) {________________}

6

{(k+1)+1}{(2k+2)+1}

=(k+1) [_____________________]

6

(k+1) {(k+1) +1 } {2(k+1)+1}

=--------------------------------------------------

6

so given statement is true for n=k+1 if it's true for n=k

so by principle of mathematical induction given statement is true for any natural number

Hope it helps you

Answered by Anonymous
10

  \huge \sf \fcolorbox{red}{pink}{Solution :)}

Let ,

 \sf P(n)  =  {(1)}^{2}  +  {(2)}^{2}  +  {(3)}^{2}  + ..... +  {(n)}^{2}  = \frac{n(n + 1)(2n + 1)}{6}  \:  -  -  - \:  eq(i)

For n = 1 , LHS of equation (i) = 1 and RHS of equation (i) = 6/6 = 1

 \sf \therefore LHS =  RHS

Therefore , P(1) is true

Assume P(K) is true , then

 \sf P(k)  =  {(1)}^{2}  +  {(2)}^{2}  +  {(3)}^{2}  + ..... +  {(k)}^{2}  = \frac{k(k + 1)(2k + 1)}{6}

For n = K + 1

 \sf P(k)  =  {(1)}^{2}  +  {(2)}^{2}  +  {(3)}^{2}  + ..... +  {(k)}^{2}   +  {(k + 1)}^{2} = \frac{(k + 1)(k + 2 )(2k + 3)}{6}

 \sf \hookrightarrow RHS =  \frac{k(k + 1)(2k + 1)}{6}  +  {(k + 1)}^{2}  \\  \\\sf \hookrightarrow RHS =   (k + 1) \bigg(\frac{k(2k + 1) + 6(k + 1)}{6}   \bigg) \\  \\\sf \hookrightarrow RHS =  (k + 1) \bigg(\frac{2 {(k)}^{2}  + 7k + 6}{6}   \bigg)  \\  \\\sf \hookrightarrow  RHS =  \frac{(k + 1)(k + 2)(2k + 3)}{6} = LHS

Therefore , P(k+1) is true , hence by PMI , P(n) is true for all natural number

_____________ Keep Smiling

Similar questions